Accueil : Mathématiques
Accueil >> Le problème de la quinzaine >> Une inégal...

article Une inégalité tétraédrique !     -    publié le 14/01/2013    mis à jour le 02/02/2013

Sujet n°8 ( difficile)

• Enoncé

$ABCD$ étant un tétraèdre quelconque, soient $h_1,h_2,h_3,\; \text{et}\; h_4$ les hauteurs qui partent respectivement des sommets $A,B,C,D$ et $A_1,A_2,A_3 \; \text{et}\; A_4$, les aires des quatre faces $BCD,ACD,ABD \; \text{et}\;ABC$. On note $V$ le volume de ce tétraèdre. Trouver le plus grand entier $k$ tel que :

$$(A_1+A_2+A_3+A_4)(h_1+h_2+h_3+h_4) \geq kV$$

• Les solutions

Contact
Accessibilité
Mentions légales
RSS
Académie de Poitiers, Rectorat, 22 rue Guillaume VII le Troubadour BP 625 86022 Poitiers Cedex