NOM : Groupe
TP probabilités : le jeux des trois portes
Utilisation d'une simulation informatique en langage python
Première simulation
Un premier programme en python simule une partie de jeux des trois portes.
Un exemple de sorties (résultats) du programme est montré ci-dessous :
Simulation d'une partie du jeux des trois portes
Jeu de la télévision américaine présenté par Monty Hall
La voiture est cachée derrière la {' porte3 '}
Le joueur choisit la {'porte2'}
Monty Hall ouvre la {'porte1'}
Les {'porte2', 'porte3'} sont fermées.
Monthy Hall demande au joueur s'il veut changer son choix:
Non, le joueur ne change pas son choix, on ouvre la {'porte2'}
le joueur perd
Oui: le joueur change son choix, on ouvre la {'porte3'}
le joueur gagne la voiture
Compléter les sorties du code simulant une partie du jeux des trois portes :
Simulation d'une partie du jeux des trois portes
Jeu de la télévision américaine présenté par Monty Hall
La voiture est cachée derrière la {' porte2 '}
Le joueur choisit la {' porte3 '}
Monty Hall ouvre la {' '}
Les {' ', ' sont fermées.

'}

'}

Monthy Hall demande au joueur s'il veut changer son choix:

Non, le joueur ne change pas son choix, on ouvre la {'

Oui: le joueur change son choix, on ouvre la {'

le joueur

le joueur

Un peu de probabilités

On note:

- V: l'événement gagner la voiture
- P(V): la probabilité de gagner la voiture

Quelle est la probabilité P(V) de gagner la voiture ? On donnera le

résultat exacte sous forme d'une fraction, puis d'une valeur approchée au centième :

$$P(V) = \frac{\cdots}{\cdots}$$

Problème:

Le présentateur ouvre une porte (ici la porte 3) et demande à un charmant petit couple qui participe au jeu, s'ils veulent changer leur premier choix.

Athéna et Ancelade ne semblent pas d'accord sur la stratégie à tenir.

- Athéna pense qu'il faut changer son choix.
- Ancélade pense que non.

Pourrez-vous à l'aide d'une simulation du jeu écrite en python aider Athéna et Ancélade à choisir une stratégie?

Usage de la première simulation

Cette première simulation est disponible en cliquant https://replit.com/talk/share/Monty-Hall- <u>Game-simulation/130522</u> ou depuis PearlTrees. Pour jouer une fois cliquer sur la flèche au milieu :

Noter vos résultats ci-dessous sous forme d'une fraction, puis d'une valeur décimale approchée

Nombre de jeux	Fréquence Gains (ne change pas)	Fréquence Gains (change d'avis)
5		
10		
20		

$$\underline{\textit{Rappel}} : f_{gain} = \frac{nbre\ gains}{nbre\ parties}$$

Analyse de la première simulation :

Noter pour tous les groupes les fréquences de gains pour chaque situation :

Nombre de répétitions du jeux	$f_{gainsAnc\'elade}$ Anc\'elade ne change pas son premier choix	$f_{gainsAth\acute{e}na}$ Ath $\acute{e}na$ change son premier choix
5		
20		

Placer les fréquences de gains (<u>avec changement du choix</u>) sur l'axe ci-dessous :

														3	Fr	$m{\acute{e}}m{q}^{\prime}$	ue	n	ce 5	$rcute{e}_{l}$	oéti	itio	ns
0.05	0.1	0.1	.5	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.	75	0.	8	0.85	0.9	9 0	.95	1
														F	$r\epsilon$	qu	er	ic	e 20	$r\acute{e}$	$p\acute{e}t$	itic	ns

<u>Première conclusion :</u>
Lorsque ond'avis, onplus souvent, c'est donc
qui a raison etqui est la
Toutes les fréquences calculées pour un même nombre de jeux sont-elles identiques ?
changent autour d'une valeur
<u>Remarque</u> :
Lorsque le nombre de répétitions du jeu augmente, les fréquences des gains (avec changement
ou non du choix) tendent vers La fluctuation des gains diminue.

Que faire pour que la valeur des fréquences se rapproche de la
probabilité de gagner en changeant son choix ?

créé avec l'application 🕬 développée par la (BNI

Deuxième simulation

Pensez-vous aussi que la chance de gagner soit, après ouverture d'une porte, de une chance sur deux ? Après tout, il reste deux portes fermées.

Une deuxième simulation perme de calculer la fréquence des gains automatiquement. Une partie du programme de la deuxième simulation est montrée ci-dessous :

```
9
10
    # random : module permettant de faire des tirages aléatoires
11
    import time
12
    import random
13
    print(time.strftime(' %d /%m/%Y %H:%M:%S'))
14
15
16
    #Nombre de répétition du jeux
17
    N jeux = 5
18
19
    print('le joueur ne change pas son choix')
20
    for jeux in range(N jeux):
21
        #liste contenant le numéro de chacub=ne des trois portes
22
        portes = ['porte_1', 'porte_2', 'porte_3']
23
        On choisit une des trois portes
        voiture = random.choice(portes)
24
```

le joueur ne change pas son choix

le joueur gagne : 2 sur 5

le joueur change son choix

En changeant son choix, le joueur gagne : 2 sur 5

Un exemple de résultat de cette simulation est donnée ci contre

Quelle ligne faut-il modifier dans le programme pour augmenter le nombre de répétitions?

Ouvrir la simulation et compléter le tableau ci-dessous

https://replit.com/@jeanpat/RepeatMonthyHallSimulation#main.py ou avec depuis Pearltrees

Nombre répétitions		
Fréquence gain avec modification du choix		

Quelle est selon vo	ous la probabilité d	e gagner en changed	ant le choix de la port	e ?