Le courant alternatif

Exercices d'application :
la fréquence d'un courant alternatif est de 40 Hz . Calculer ses période et pulsation
un courant d'appel téléphonique à une fréquence de 25 Hz et une intensité efficace of 0,4 A. calculer : - sa pulsation - son intensité maximale
calculer les intensités efficace et maximale d'un courant alternatif , qui circulant pendant 6 mn $25s$ dans une résistance de 3Ω produit un dégagement de chaleur de 1100 cal (calories)
an andima à una mériatan a mana da 20 O una tambén alta matina da unla m
on applique à une résistance pure de 20 Ω une tension alternative de valeur maximale 325 V. calculer : - la tension efficace - l'intensité efficace - l'intensité maximum

EXERCICES D'APPLICATION

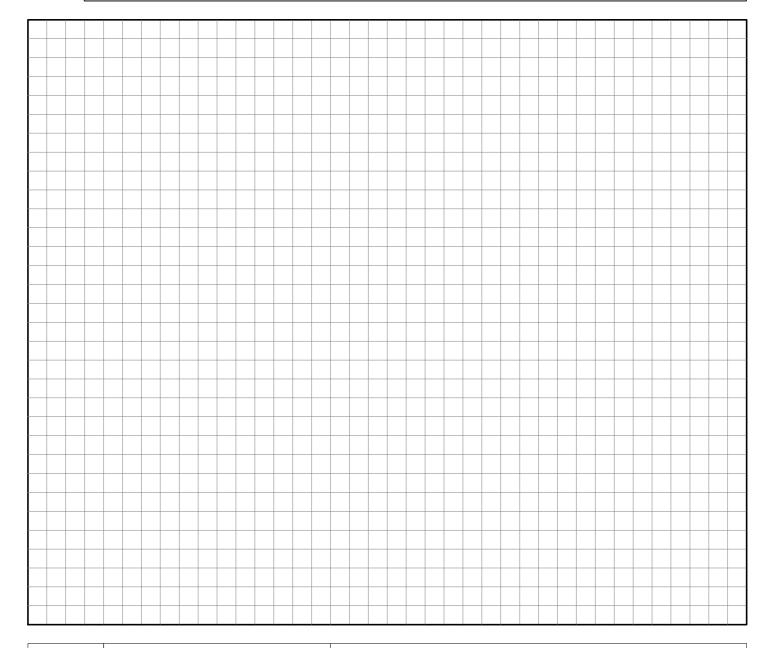
CAP PRO E

Le déphasage ou facteur de puissance

	Exercices d'a	applicatio	on:						
1	Deux tensior dessous :	ns sont dép	hasées. Q	uelles sont	les dépha	sages corr	respondant	s au tablea	au ci-
		T/2	T/3	T/4	T/5	T/6	T/12	T/20	
	En radian								
	En degré								
2	Deux courai retard du sec ces deux cou	ond sur le			-		-		
3			tés efficac à donner a	e et maxin ux fils de	num ligne si J			on efficace	e de

EXERCICES D'APPLICATION

CAP PRO E


Loi des tensions en série

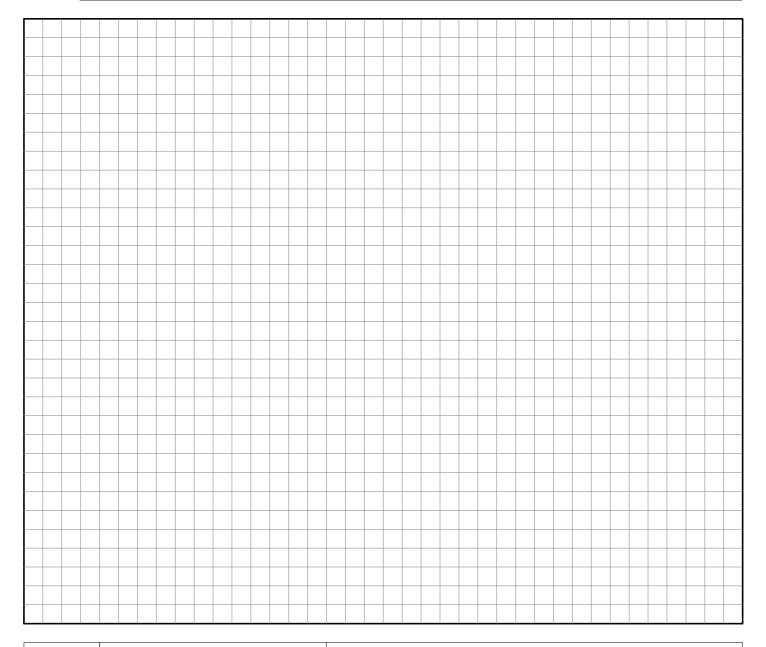
Exercices d'application:

trois récepteurs sont associés en série. Les tensions à leurs bornes sont les suivantes :

- $U_1 = 60 \text{ V}$ - $\cos \phi_1 = 0.7$ avec U_1 en avance sur I - $U_2 = 40 \text{ V}$ - $\cos \phi_2 = 0.4$ avec U_2 en retard sur I - $U_3 = 35 \text{ V}$ - $\cos \phi_3 = 1$ déterminer la tension U aux bornes du groupement et le déphasage :

(Echelle: 1 cm pour 10 V).

CAP PRO E	EXERCICES D'APPLICATION


Loi des intensité en parallèle

Exercices d'application:

trois récepteurs sont associés en parallèle. Les intensités dans chacun d'eux sont les suivantes

-
$$I_1$$
 = 1,5 A - $\cos \phi_1$ = 0,8 avec I_1 en retard sur U
- I_2 = 2A - $\cos \phi_2$ = 0,7 avec I_2 en avance sur U
- I_3 = 3A - $\cos \phi_3$ = 1
déterminer l'intensité I absorbée par le groupement et le déphasage :

(Echelle: 3cm pour 1 A)

CAP PRO E	EXERCICES D'APPLICATION

Circuit résistif pur

	c.	c
Exercices	d'ann	lıcatıon •
Lycitics	u u p p	iluion.

1	un radiateur électrique de puissance 2000 w est placé sous 230 V 50 Hz . Calculer l'intensité appelée et sa résistance . Comment sont les courbes de tension et d'intensité ? Définir ϕ et cos ϕ	₽

CAP PRO E	EXERCICES D'APPLICATION

Circuit selfique pur

Exercicas	d'ann	Sication	
Exercices	u u p p	ucuion	•

	calculer la réactance d'un circuit de quelle sera l'intensité qui va s'établi	coefficient de self $L = 0.03 \text{ H}$ placé sous 230 V 50 Hz.		
_				
	un réactor parfait absorbe 0,2 A sou inductance	s 120 V 50 Hz. Déterminer sa réactance de self et son		
	une bobine de résistance négligeable Quelle est la fréquence du courant ?	placée sous 230 V absorbe 5 A; son inductance est de 0,28 H.		
L				
4	on dispose d'une source alternative d intensités qui s'établiront dans les sel - L = 1.10 H - L = 0.5 H - L = 0.25 H	e valeur efficace 230 V et de fréquence 50 Hz . Calculer les fs suivantes :		
	CAP PRO E	EXERCICES D'APPLICATION		

Circuit capacitif pur

1	un condensateur de capacité 200 μ f (1 μ f = 10 ⁻⁶ F) est parcouru par un courant alternatif de tension efficace 100 V et de fréquence 50 Hz. Calculer l'impédance du circuit et l'intensité qui va s'établir.		
2	un condensateur placé sous 20 V 50	Hz absorbe 10 A . Quelle est sa capacité ?	
3		uer aux bornes d'un condensateur de capacité 80 μF pour que 8 A ? La fréquence du courant est de 50 Hz	
4	un condensateur de capacité $C = 20 \mu F$ est parcouru par une tension alternative de valeur efficace 120 V . L'intensité efficace étant de 0,377 A , quelle est la fréquence du courant ?		
5	on dispose d'une source alternative de intensités qui s'établiront dans les con - $C = 0,008 \text{ F}$ - $C = 200 \mu \text{ f}$ (1 nf	$1 \mu f = 10^{-6} F$	
	CAP PRO E	EXERCICES D'APPLICATION	

Circuit alternatif RL en série

1	quelle est l'impédance d'une bobine	R = 8 Ω , L = 0,08 H placée sous 230 V 50 Hz?		

2	quelle est l'impédance d'un circuit série	e R = 12 Ω, L = 0,05 H placé sous 100 V 60 Hz ?		
	T P			

3	une bobine R = 5 Ω L = 0,2 H - son impédance Z - son cos ϕ	est placée sous 125 V 50 Hz . Calculer : - l'intensité efficace du courant		
4		, - · · · · · · · · · · · · · · · · · ·		
5	déterminer :	essais suivants : $I = 2 \text{ A}$ - en courant alternatif : $U = 220 \text{ V}$ 50 Hz $I = 1,5 \text{ A}$ sa réactance de self - son cœfficient d'auto induction de self		
	CAP PRO E	EXERCICES D'APPLICATION		

Circuit alternatif RC en série

1	quelle est l'impédance d'un circuit se	érie $R = 85 \Omega$, $C = 25 \mu$ F placé sous 230 V 50 Hz?		
2	un circuit série est composé d'une résistance $R=10~k~\Omega$ et d'un condensateur . Placé sous 220 V, 50 Hz il absorbe 11 mA . En déduire : - son impédance - sa réactance de capacité - la capacité du condensateur - le cos ϕ du circuit			
3	quelle est l'impédance d'un circuit se	érie R = 12 Ω, C = 5 mF placé sous 100 V 60 Hz ?		
4	quelle sera la tension efficace aux bornes d'un condo parcouru par 2A dont les caractéristiques sont : R = 4 Ω C = 10 μ F. La fréquence est de 50 Hz - quel sera le cos ϕ ?			
5	sur un condensateur on a procédé aux essais suivants : - en courant continu : U = 100 V I = 4 A - en courant alternatif : U = 220 V 50 Hz I = 2 A déterminer : - sa résistance - son impédance - sa réactance de self - son cœfficient d'auto induction de self			
	CAP PRO E	EXERCICES D'APPLICATION		

Circuit alternatif RLC en série

Exercices d'application:

1

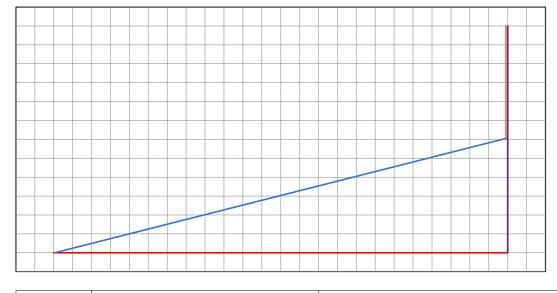
un circuit radio est composé d'une résistance R = 150 Ω en série avec une self L = 10 mH et un condensateur C = 1 μ F . Déterminer son impédance et son $\cos \phi$ par la méthode graphique dans les 3

cas suivants :

 $- \omega = 20\ 000\ rd/s$

 $-\omega = 8\,000\,\text{rd/s}$

 $-\omega = 10\ 000\ rd/s$


2

un bobinage alimenté sous $230 \, V$ $50 \, Hz$ présente un cœfficient d'auto induction de self $L=0.5 \, H$. On veut annuler l'effet de self par un condensateur . Quelle sera la capacité du condensateur ?

3

d'après le diagramme des impédances ci-contre et sachant que $\,R=8\,\Omega\,$, déterminer :

- l'échelle
- la réactance de self et le cœfficient d'auto induction de self
- sa réactance de capacité et la capacité du condensateur
- l'impédance du circuit
- le $\cos \phi$ du circuit

échelle	
Xs	
Xc	
L	
С	
Z	
Cos φ	

CAP PRO E	EXERCICES D'APPLICATION

Puissances en alternatif

		•	
1	Une installation électrique alim 0,85 . Calculer ses puissances appare	entée sous 230 V absorbe 15 A . Son facteur de puissance est de ente ,active , réactive	
2		r alternatif monophasé sont : $U = 230 \text{ V}$, $I = 10 \text{ A}$, ses puissances apparente , active , réactive , utile (ch)	
3	<u> </u>	é fonctionnant sous 230 V développe une puissance utile de t son $η = 0,9$. Quelle est l'intensité absorbée ?	
4	Une bobine de résistance $8~\Omega$, de cœfficient de self induction $L=0.02~H$, est placée sous $230~V~50~Hz$. Déterminez : - son impédance - l'intensité du courant appelé – son facteur de puissance - ses puissances active et réactive		
5	Calculer pour chacun des appareils suivants placés sous 230 V 50 H z , S et I - un radiateur de 1150 W - un moteur de puissance active 1150 W et de cos $\phi = 0.88$ - un groupe de tubes fluorescents de puissance active 1150 W et de cos $\phi = 0.55$ Que constatez vous ?		
	GAR PROGE	EWED CYCLE DATE DATE OF TAXABLE	
	CAP PRO E	EXERCICES D'APPLICATION	

Puissances en parallèle de cos \phi différents

Exercices d'application:

1

Une installation alimentée en courant alternatif monophasé 230 V - 50 Hz comprend :

- un groupe de lampes à incandescence de puissance 500 W
- un moteur de puissance 750 W et de $\cos \phi = 0.7$

Déterminer par la méthode arithmétique : Pt , Qt , St , It , $\cos \phi_{\scriptscriptstyle t}$

2

une installation monophasée 230 V 50 Hz comprend :

- un radiateur de 1200 W
- un moteur de puissance mécanique 2 ch , de rendement 0,92 de $\cos \phi = 0.8$
- une batterie de tubes fluorescents de 600 W et de cos ϕ = 0,45

Déterminer par le diagramme des puissances : Pt , Qt , St , It , $\cos\phi_{t}$ Echelle 1cm pour 200W

CAP PRO E	EXERCICES D'APPLICATION

Améliorarion du facteur de puissance

1	0,75 . Calculer : a – ses puissances active , appar b – l'intensité absorbée sous 23	$80~V~50~Hz$ alimentation un condensateur de $50~\mu$ F . Calculer : densateur ve de l'ensemble
2	Un moteur alimenté sous $U = 230 \text{ V}$ 50 Hz absorbe à pleine charge une puissance de 8 kw avec un $\cos \phi = 0.8$. A charge réduite la puissance absorbée est de 4 kw avec un $\cos \phi = 0.5$. Calculer : a – la puissance réactive à pleine charge b - la puissance réactive à charge réduite $c - la$ capacité du condensateur nécessaire pour remonter le $cos \phi$ en charge réduite à 0.8 d – le condensateur restant branché quel sera alors le $cos \phi$ en pleine charge ?	
3	Une batterie de tubes fluorescents d'une puissance de 900 W a un $\cos \phi = 0.6$. Calculer la capacité du condensateur nécessaire pour remonter le facteur de puissance à la valeur $\cos \phi_1 = 0.9$. $U = 230 \text{ V} 50 \text{ Hz}$	
	CAP PRO E	EXERCICES D'APPLICATION

Les courants triphasés

Exercices d'application: un alternateur triphasé produit une tension simple de 400 V. Quelle est la valeur de la tension composée? on dispose d'une alimentation triphasée de tension entre phases 230 V et de 3 résistors de 40 Ω . 2 Calculer les intensités dans chaque résistor et en ligne si on les branche en étoile et en triangle 3 lampes 100 W 230 V sont branchées en étoile sur une distribution 4 fils assurant une tension 3 entre phases et neutre de 230 V. Calculer l'intensité dans chaque fil de ligne et dans le neutre quand : a) une lampe est allumée b) 2 lampes sont allumées c) 3 lampes sont allumées on dispose d'une alimentation triphasée 4 fils de tension entre phases 400 V et on veut brancher 12 lampes 100 W 230 V en montage équilibré a) schéma justifié du branchement b) intensités dans une lampe et en ligne c) puissance active absorbée

CAP PRO E	EXERCICES D'APPLICATION

Les récepteurs triphasées

Exercices d'application.	Exercices	d'appi	lication	:
--------------------------	-----------	--------	----------	---

CAP PRO E

1	quelle est l'intensité absorbée par un moteur triphasé de caractéristiques , $Pu = 3$ ch , $\eta = 0.92$, cos $\phi = 0.75$, placé sous une tension triphasée de 230 V entre phases ?
2	un moteur triphasé alimenté sous une tension triphasée de 400 V entre phases a les caractéristiques suivantes : $Pu = 3$ ch , $\eta = 0.8$, $I = 6$ A . Calculer : a) son cos ϕ b) l'intensité dans les bobines s'il est couplé en étoile , puis en triangle
3	un chauffe –eau à résistances peut en 2 h élever la température de 150 l d'eau de 15° à 80° (on considère les pertes nulles) .Il est couplé en triangle sous 400 V a) calculer la puissance du chauffe-eau b) calculer la valeur de chaque résistance c) quel serait le temps de chauffage s'il était couplé en étoile ?
4	on place sur un réseau triphasé de tension entre phases 400 V un moteur de caractéristiques suivantes : intensité : 10 A $\cos \phi = 0.85$ $\eta = 0.9$. Calculer : a) sa puissance apparente b) sa puissance active c) sa puissance réactive d) sa puissance mécanique e) l'intensité dans ses bobinages

EXERCICES D'APPLICATION

Le transformateur

	Exercices d'application :
1	Un transformateur compte 1200 spires au primaire et 480 au secondaire . Le courant étant fourni au primaire sous 500 V quelle sera la tension au secondaire ?
2	Un transformateur alimenté sous 230 V débite 2,5 A dans une résistance de 5 Ω . L' intensité dans le primaire étant de 0,15 A , quel est son rendement ?
3	Un transformateur compte 600 spires au primaire et 150 au secondaire . La tension primaire est de 400 V . Le secondaire alimente des appareils d'une puissance de 2500 W . Le rendement étant de 0,98 , calculer les intensités primaire et secondaire :
4	On veut évaluer le nombre de spires des 2 enroulements d'un transformateur $230~V / 10000V$. On enroule 20 tours de fil sur la colonne secondaire et on alimente le transformateur sous $120~V$. La tension aux bornes des $20~$ spires est de $30~V$. Quel est le nombre de spires au primaire et au secondaire ?

5	Un transformateur supposé parfait compte 6000 spires au primaire et 500 au secondaire .Le primaire est placé sous $48~V~50~Hz$. Le secondaire alimente une bobine d'inductance $L=0,05~H$ et de résistance $R=100~\Omega$. Calculer : $a-la~tension~au~secondaire \\ b-l'intensité dans le secondaire \\ c-l'intensité dans le primaire$

EXERCICES D'APPLICATION

CAP PRO E