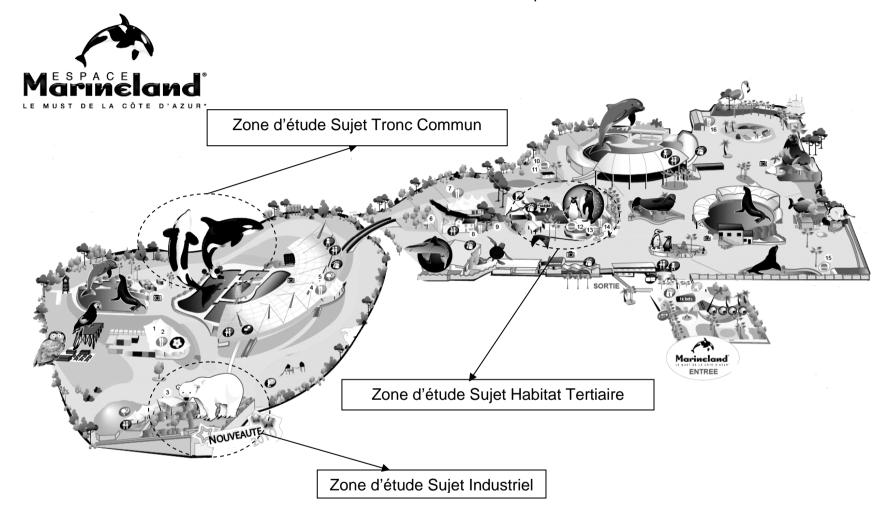
Baccalauréat Professionnel Électrotechnique Énergie Équipements Communicants

ÉPREUVE E2 : Étude d'un ouvrage

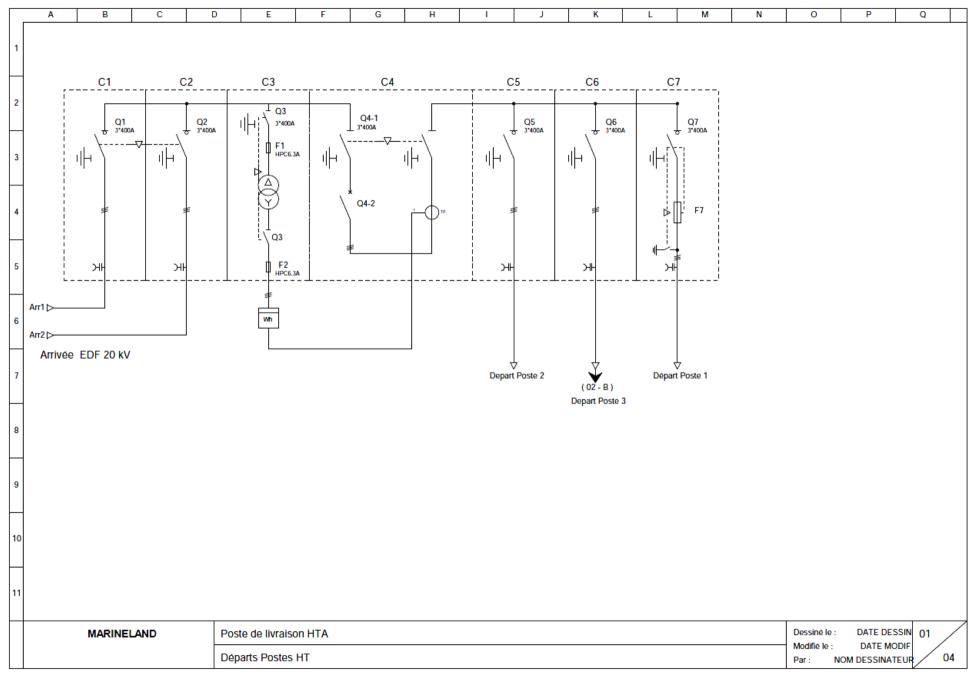
SESSION 2012

ESPACE MARINELAND

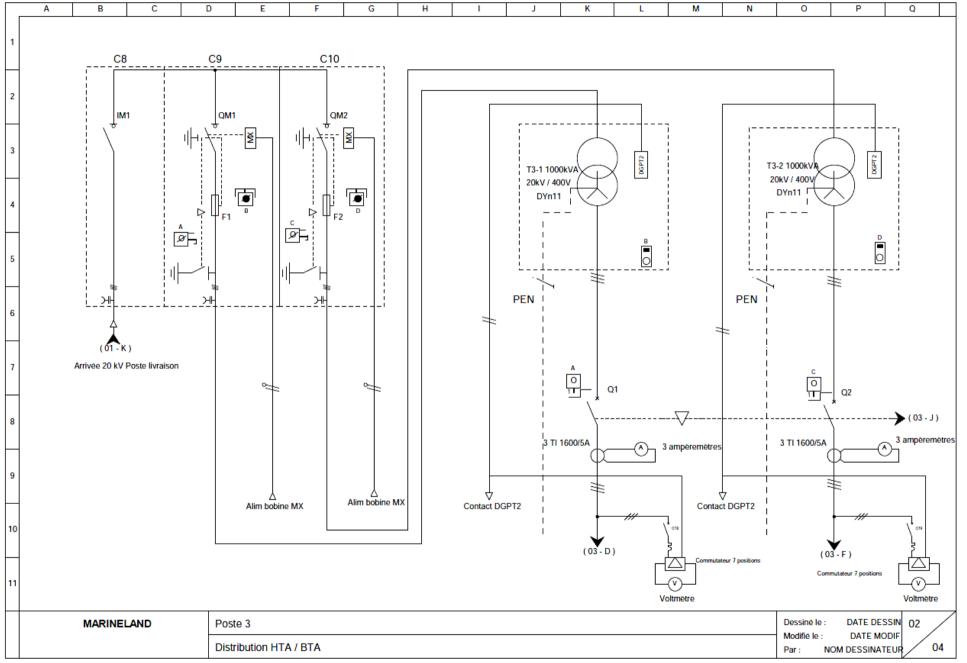
DOSSIER TECHNIQUE


BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 1 / 42

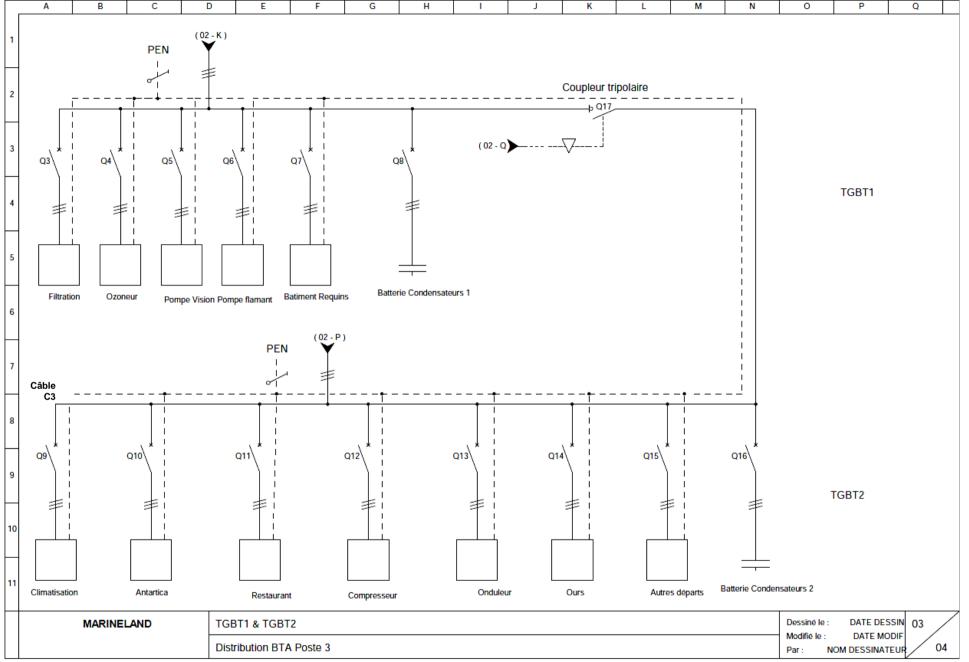
L'étude portera sur les installations du Parc d'attraction « MARINELAND » situé à Antibes dans les Alpes Maritimes.


Le Groupe VEOLIA a été désigné pour la conception des nouvelles installations, la rénovation, l'exploitation et la maintenance des installations existantes.

« MARINELAND » compte un gigantesque aquarium de 44 millions de litres contenant des orques énormes. La filtration primordiale pour une bonne visibilité et la santé des animaux est assurée par 21 groupes motopompes de 15 kW à vitesse variable et des filtres à sable. L'ensemble est piloté par des automates raccordés à la Gestion Technique Centralisée via le réseau Ethernet.



Cet espace est l'un des rares en Europe à être alimenté en eau de mer, filtrée et maintenue à 14°C toute l'année. Pour le confort des animaux, un système de climatisation est mis en place dans leur espace de nuit, mais surtout deux grottes réfrigérées avec lit de glace sont à leur disposition.


BAC DDO ELEEC	Code: 1206-EEE EO	Dossier technique	Section 2012	Enrouvo : E2	Page : 2 / 42	
DAC FRO ELEEC	Code : 1200-EEE EO	et ressources	36881011 2012	Epieuve . EZ	raye. 2/42	İ

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 3 / 42

BAC PRO ELEEC Code : 12

BAC PRO ELEEC	Code: 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 5 / 42	
---------------	-------------------	---------------------------------	--------------	--------------	---------------	--

Départs associés au jeu de barres TGBT1 :

	Filtration	Ozoneur	Pompe Vision	Pompe Flamant	Bâtiment requins
lb (A)	522,8	214,1	199,1	49,2	386
Polarité du circuit	Tri + N	Tri + N	Tri + N	Tri + N	Tri + N
Puissance (kW)	297	132	120	30	230
Cos phi	0,82	0,89	0,87	0,88	0,86
Ku	0,8	0,8	0,7	0,6	0,8

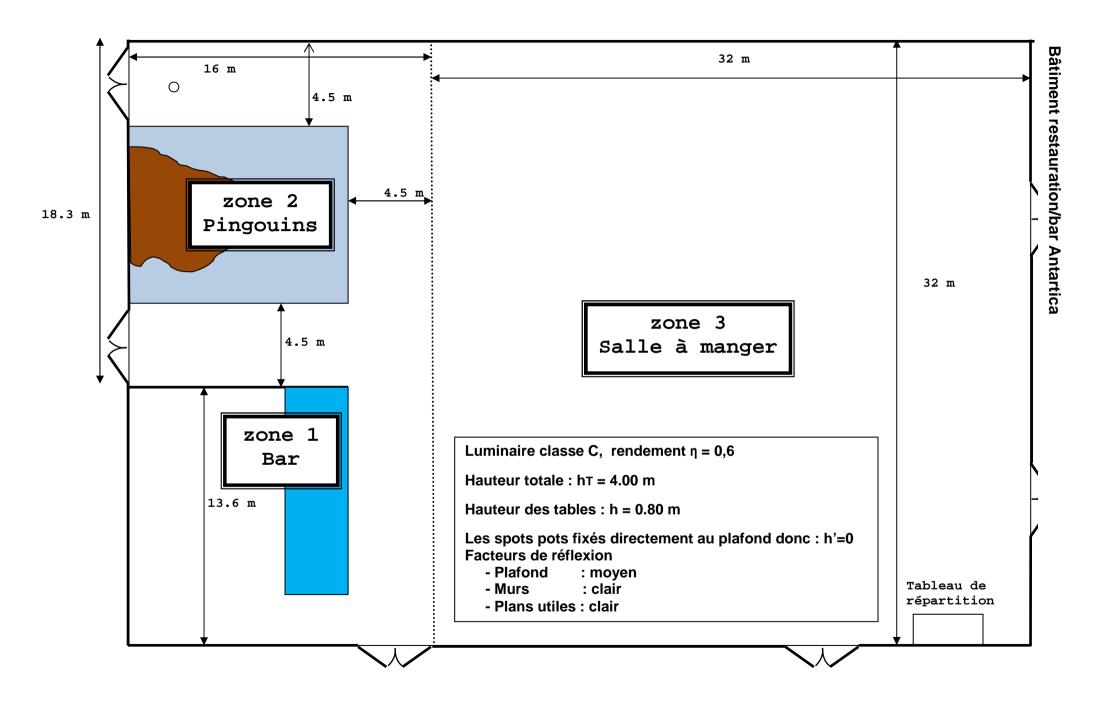
Départs associés au jeu de barres TGBT2 :

	Clim	Antartica	Restaurant	Compresseur	Onduleur	Ours	Autres
							Départs
lb (A)	99,5	651,3	196,8	79,3	86,6	424,5	331,8
Polarité du	Tri + N	Tri + N	Tri + N	Tri + N	Tri + N	Tri + N	Tri + N
circuit							
Puissance (kW)	60	370	120	50	60	250	200
Cos phi	0,87	0,82	0,88	0,91	1	0,85	0,87
Ku	0,9	0,8	0,7	0,6	0,5	0,8	0,8

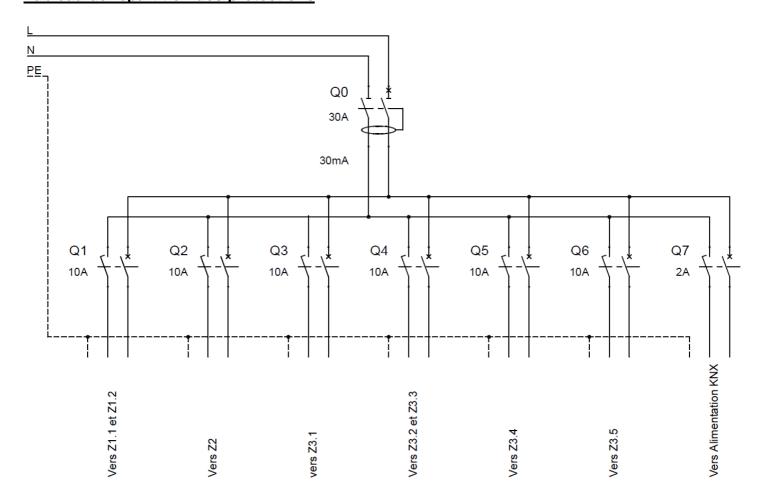
<u>Caractéristiques du Départ Filtration :</u>

- Courant d'emploi lb = 522,8 A
- Courant de court circuit triphasé en aval de Q3 : 23,1 kA
- Câble multiconducteurs en Aluminium

Section: 3 phases de (2x240 mm² / Ph) + PEN de (2x240mm²)


Pose sur chemin de câbles perforé, disposé sur une seule couche avec un second circuit

- Longueur du départ 140m
- Température ambiante 25℃
- Câble Aluminium isolé PR
- 15 % < THDI % < 33 % (Facteur neutre chargé à déterminer)
- Pose asymétrique (Facteur de symétrie à déterminer)


Cahier des charges pour la mise en œuvre des centrales de mesure communicantes

- Indice de mesure (IM) 772.
- Centrale avec afficheur intégré.
- Mesure de U,I,P,Q,S, cosφ.
- Mesure des énergies actives, réactives et apparentes.
- Câblage 4 fils avec 3 TC (Transformateurs d'intensité) à choisir. Montage des TC sur le jeu de barres du TGBT2 (dimensions des barres: 127mm x 38mm)
- Mesure du THD jusqu'au rang 63.
- Courbe de tendance disponible. Pas de détection des creux et sauts de tension.
- Centrale TGBT1 en fin de ligne de communication.
- Communication MODBUS RS485 2 fils entre les centrales des TGBT et la passerelle EGX (32 participants maximum).
- Communication TCP/IP de la passerelle EGX intégrée dans le LAN de l'entreprise.
- Passerelle EGX protégée par disjoncteur Q42.
- Distance entre les centrales de mesure et la passerelle EGX : 620 mètres. La passerelle sera intégrée à la baie de brassage « OURS » dédiée à la GTC et raccordée sur un switch 24 ports dont 19 utilisés pour d'autres applications.

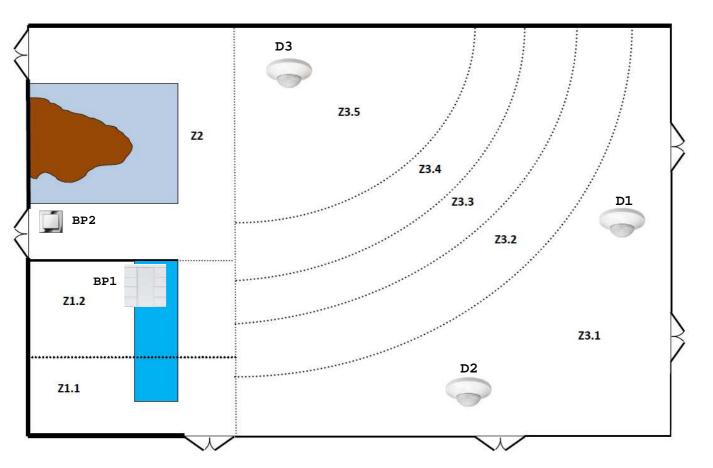
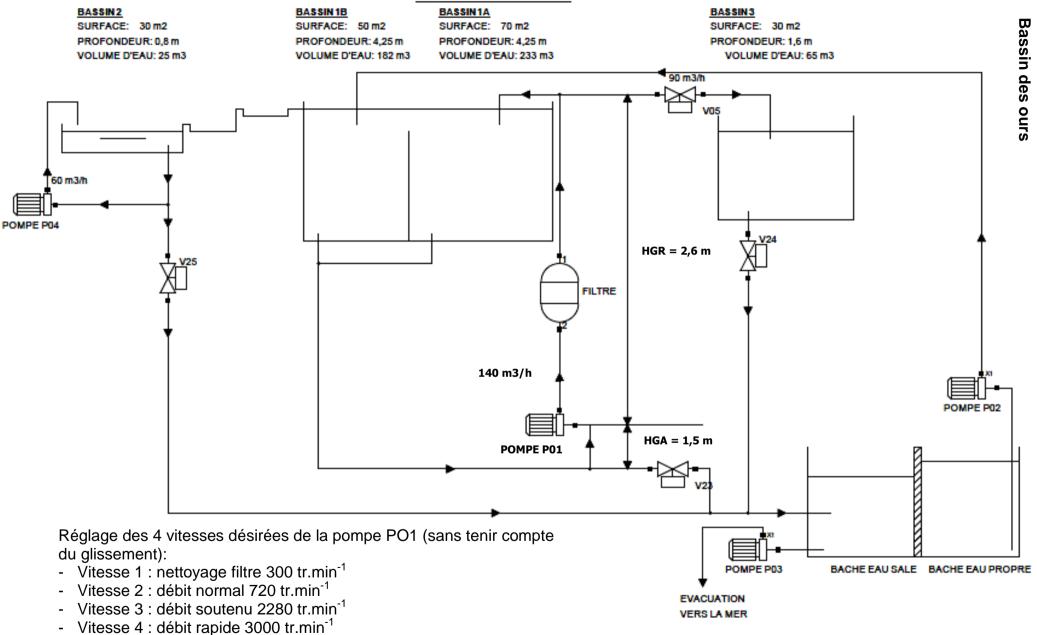

BAC PRO FLEEC	Code: 1206-EEE EO	Dossier technique	Session 2012	Foreuve · F2	Page : 6 / 42	
Brio i no EEEE	0000: 1200 222 20	et ressources	00001011 2012	Lprouvo . L2	1 490 : 07 12	

Tableau de répartition des protections



Implantation des participants KNX de gestion d'éclairage

BAC PRO EL FEC	Code: 1206-EEE EO	Dossier technique	Session 2012	Enreuve · F2	Page : 8 / 42
BACT NO ELLEC	0000: 1200 EEE EO	et ressources	00001011 2012	Lprouve . L2	1 ago . 07 42

BASSIN DES OURS

	BAC PRO ELEEC	Code : 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 9 / 42	
--	---------------	--------------------	---------------------------------	--------------	--------------	---------------	--

DOSSIER RESSOURCES et DOCUMENTATION CONSTRUCTEURS

Le dossier ressources DR est découpé en 5 parties :

PARTIE A : Distribution électrique

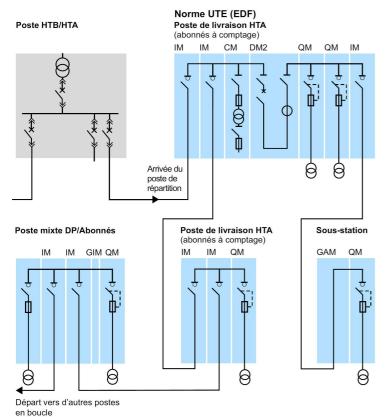
PARTIE B : Centrale de mesure

PARTIE C : Départ « filtration »

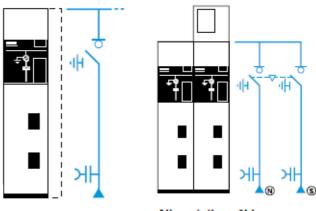
PARTIE D : Projet d'éclairage

PARTIE E : Moto-pompe

BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 10 / 42

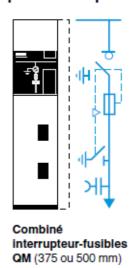

Cellules HTA

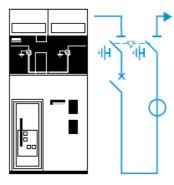
Définition des cellules


Les différentes cellules de SM6-24 entrant dans la composition des postes de transformation HTA/BT et de répartition industriels sont :

- IM, IMC, IMB interrupteur
- QM, QMC combiné interrupteur-fusibles
- DM2 disjoncteur (SF6) double sectionnement
- CM, CM2 transformateurs de potentiel

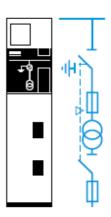
Postes de transformation HTA /BT


Raccordement aux réseaux


Interrupteur IM (375 ou 500 mm)

Alimentation câbles pour arrivée prioritaire et secours NSM-câbles (750 mm)

Protection par interrupteur-fusibles



Protection par disjoncteur à coupure dans le SF6

Disjoncteur double sectionnement départ droite DM2 (750 mm)

Comptage HTA

Transformateurs de potentiel pour réseau à neutre à la terre

CM (375 mm)

PARTIE A

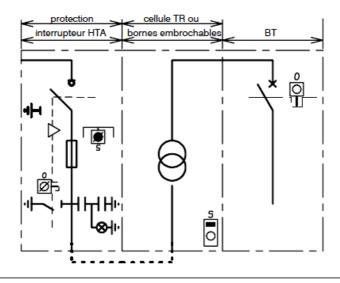
BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 11 / 42 |

Cellules Interrupteurs

- la fermeture de l'Interrupteur n'est possible que si le sectionneur de terre est ouvert et le panneau d'accès en place.
- la fermeture du sectionneur de terre n'est possible que si l'interrupteur est ouvert.
- l'ouverture du panneau d'accès aux raccordements n'est possible que si le sectionneur de terre est fermé.
- l'Interrupteur est verrouillé en position ouvert lorsque le panneau d'accès est enlevé. Les manœuvres du sectionneur de terre sont alors possibles pour des essais.

Verrouillages fonctionnels


Ils répondent à la recommandation 62271-200 et à la spécification EDF HN 64-S-41. Outre les verrouillages fonctionnels, chaque sectionneur ou interrupteur comporte :


- des dispositifs de cadenassage prévus par construction (cadenas non fourni)
- 4 préperçages destinés à recevoir chacun une serrure (fournie sur demande) pour des verrouillages éventuels par serrures et clés.

e verroui 21 C4	llage			
1 C4	Δ3			
	,	A4	A5	50
. _				.
				-
				•
	•			

schéma type C4

Légende serrures :

but du verrouillage

interdire:

 la fermeture du sectionneur de mise à la terre et l'accès aux coupe—circuit de la cellule protection, tant que le disjoncteur général BT n'est pas verrouillé ouvert ou débroché. l'accès au transformateur de puissance, si le sectionneur de mise à la terre de la cellule protection n'a pas été au préalable fermé.

fonctionnement

accès aux coupe-circuit :

Ouvrir ou débrocher et verrouiller le disjoncteur BT. (la clé O est libre)

Porter la clé O sur le sectionneur de mise à la terre de la cellule protection.

Ouvrir l'interrupteur.

Déverrouiller et fermer le sectionneur de mise à la terre. (la clé O est prisonnière)

Enlever le panneau. (le sectionneur de mise à la terre peut être réouvert, la clé reste prisonnière)

accès au transformateur dans cellule TR :

Panneau de cellule protection enlevé, prendre la clé S à l'intérieur.

Avec cette clé, déverrouiller le panneau supérieur.

Ce panneau retiré, les suivants sont libérés. (la clé S est prisonnière)

PARTIE A

BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 12 / 42

transformateurs de distribution HTA/BT

transformateurs immergés de type cabine de 100 à 3150 kVA - isolement ≤ 24 kV / 400V normes CEI

description

Cette gamme est constituée de transformateurs correspondant à la spécification suivante :

- transformateurs triphases, pour installation a l'intérieur ou à l'extérieur (à préciser);
- de type abaisseur (1);
- frequence assignée: 50 Hz (6);
- temperature ambiante maxi: 40°C (5);
- immerges dans l'huile minerale (3) (autre diélectrique sur demande);
- etanches a remplissage total (ERT) (7);
- couvercle boulonné sur cuve;
- refroidissement naturel de type ONAN;

France Transfo garantit que les transformateurs sont réalisés avec des constituants neufs et exempts de PCB (taux < 2 ppm), dans le strict respect des normes en viqueur.

options

■ dispositifs de controle et de protection: thermometre, thermostat, relais DGPT2, etc.

bloc de protection de transformateur DGPT2

C'est un appareil destiné à protéger les transformateurs étanches à remplissage total contre les défauts internes et les surintensités prolongées, tels que définis dans la NFC 13200.

Il répond aussi à la NFC 17300 quant à la protection contre les risques d'incen-

die, liés à l'utilisation des diélectriques liquides inflammables.

Pour une protection optimale, les réglages et actions à mener suivant sont pré-

contact	reglage preconise		détection		actions à commander
dégagement gazeux ou baisse de niveau	gros flotteur en position haute	4>	défaut grave	•>	mise hors tension
pressostat	0,20 bar	4>	défaut grave	4>	mise hors tension
thermostat 1er seuil	90°C	4>	surintensités	->	alarme
thermostat 2ème seuil	100 °C	4>	surintensités	=>	mise hors charge

caracteristiques electriques thermostat 2

	<u> </u>																
puissance as	signée	(kVA) (1)	100	160	250	315°	400	500°	630	800	1000	1250	1600	2000	2500	3150
toncion occio	mdo		primaire (1)	15 ou 2	20 kV												
tension assig	nee -	second	aire à vide (1)	400 V 6	entre ph	ases, 23	31 V ent	re phas	e et neu	tre							
niveau d'isole assigné (4)			primaire	17,5 l 24 l		r 15 kV r 20 kV											
réglage HTA	(hors te	nsion)		± 2,5 9	6 ou ± 5	% ou ±	2,5 %	±5%(1)								
couplage				Dyn 11	ரு (trian	gle; éto	ile neut	re sortí)									
pertes (W)			a vide	210	460	650	800	930	1100	1300	1220	1470	1800	2300	2750	3350	4380
herres (M)		dues à	la charge 🛭	2150	2350	3250	3900	4600	5500	6500	10700	13000	16000	20000	25500	32000	33000
tension de co	ourt-cir	cuit (%	,) (Z)	4	4	4	4	4	4	4	6	6	6	6	6	6	7
courant à vid	e (%)			2,5	2,3	2,1	2	1,9	1,9	1,8	2,5	2,4	2,2	2	1,9	1,8	1,7
chute de tens	sion		cos φ = 1	2,21	1,54	1,37	1,31	1,22	1,17	1,11	1,51	1,47	1,45	1,42	1,45	1,45	1,29
à pleine char	ge (%)		$\cos \varphi = 0.8$	3,75	3,43	3,33	3,30	3,25	3,22	3,17	4,65	4,63	4,62	4,60	4,61	4,62	5,11
	(charge	cos φ = 1	97,69	98,27	98,46	98,53	98,64	98,70	98,78	98,53	98,57	98,60	98,63	98,61	98,61	98,83
rendement (9	۸.	100 %	$\cos \varphi = 0.8$	97,13	97,85	98,09	98,17	98,30	98,387	98,48	98,17	98,22	98,25	98,29	98,27	98,26	98,54
remember (/	·, -	charge	cos φ. = 1	98,14	98,54	98,70	98,75	98,84	98,89	98,96	98,81	98,84	98,86	98,88	98,87	98,87	99,04
		75 %	$\cos \varphi = 0.8$	97,69	98,18	98,37	98,44	98,56	98,62	98,71	98,51	98,56	98,58	98,61	98,60	98,60	98,80
bruit (dBA)	puissar	псе асс	oustique Lwa	53	59	62	64	65	67	67	68	68	70	71	72	74	74
pression a	coustic	ue Lpa	a 0,3 metre	42	48	50	52	53	54	54	55	55	56	58	58	59	59

Protection des transformateurs

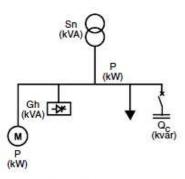
Le calibre des fusibles pour la protection des cellules SM6-24 telles que QM et QMC dépend, entre autres, des critères suivants :

- tension de service
- · puissance du transformateur
- technologie des fusibles (constructeur)

Tableau de choix des fusibles

type de	tension	puiss	sance o	du trans	format	eur (kV	/A)												tension
fusible	de service (kV)	25	50	100	125	160	200	250	315	400	500	630	800	1000	1250	1600	2000	2500	assignée (kV)
Soléfuse (cas général, no	rme U1	TE NFC	13.200)			en	Amp	ères (A)								
	3,3	16	16	31,5	31,5	31,5	63	63	100	100									7,2
	5,5	6,3	16	16	31,5	31,5	63	63	63	80	80	100	125						_
	6,6	6,3	16	16	16	31,5	31,5	43	43	63	80	100	125	125					
	10	6,3	6,3	16	16	16	31,5	31,5	31,5	43	43	63	80	80	100				12
	13,8	6,3	6,3	6,3	16	16	16	16	31,5	31,5	31,5	43	63	63	80				17,5
	15	6,3	6,3	16	16	16	16	16	31,5	31,5	31,5	43	43	63	80				_
	20	6,3	6,3	6,3	6,3	16	16	16	16	31,5	31,5	31,5	43	43	63				24
	22	6,3	6,3	6,3	6,3	16	16	16	16	16	31,5	31,5	31,5	43	63	63			_
Fusarc CF	(cas général po	ur celli	ules QN	M et QM	C suiva	nt la no	rme CE	162271	-105)										
	3,3	16	25	40	50	50	80	80	100	125	125	160 (1	1)200 (1)					7,2
	5	10	16	31,5	40	40	50	63	80	80	125	125	160 (1)					
	5,5	10	16	31,5	31,5	40	50	50	63	80	100	125	125	160 (1	160 (1)			_
	6	10	16	25	31,5	40	50	50	63	80	80	125	125	160 (1	160 (1)			_
	6,6	10	16	25	31,5	40	50	50	63	80	80	100	125	125	160 (1)			
	10	6,3	10	16	20	25	31,5	40	50	50	63	80	80	100	100	125 (1)200 (1)	12
	11	6,3	10	16	20	25	25	31,5	40	50	50	63	80	100	100	125 (1)160 (1)	
	13,8	6,3	10	16	16	20	25	31,5	31,5	40	50	50	63	80	80	100 (1)125 (1)125 (1)17,5
	15	6,3	10	10	16	16	20	25	31,5	40	50	50	63	80	80	100 (1)125 (1)125 (1)
	20	6,3	6,3	10	10	16	16	25	25	31,5	40	40	50	50	63	80	100 (1)125 (1	24
	22	6,3	6,3	10	10	10	16	20	25	25	31,5	40	40	50	50	80	80	100 (1)

Dossier technique **BAC PRO ELEEC** Code: 1206-EEE EO Session 2012 Epreuve: E2 Page: 13 / 42 et ressources


Description des facteurs de correction :

Facteur d'utilisation (Ku) :

 caractérise le taux d'utilisation de la charge en fonction du temps. Il est utilisé pour déterminer le courant circulant dans les circuits amont et dimensionner la source. Par contre il n'est pas pris en compte dans le choix de la protection du circuit.

$$Pcorrig\'ee = P \times Ku$$

Compensation de l'énergie réactive en Tarif Vert

Sn: Puissance apparente du transformateur.

Gh: Puissance apparente des récepteurs produisants des harmoniques (moteurs à vitesse variable, convertisseurs statiques, électronique de puissance...).

Qc : Puissance de l'équipement de compensation.

LE CHOIX DES FRÉQUENCES D'ACCORD DES SELFS ANTI-HARMONIQUES

Le rôle de la self anti-harmonique est de protéger les condensateurs et d'éviter que les harmoniques ne soient amplifiés. En utilisant ces selfs, il est possible de réduire la pollution parce qu'une partie des courants harmoniques générés dans l'installation sont absorbés.

Cette amélioration est d'autant plus efficace que la fréquence d'accord de la self est proche de la plage des fréquences harmoniques présentes. Une self accordée à 215 Hz absorbera davantage d'harmoniques de courant d'ordre 5 qu'une self accordée à 190 ou 135 Hz. La sélection de la fréquence d'accord doit s'effectuer sur base:

- des fréquences harmoniques présentes dans l'installation (la fréquence d'accord doit toujours être inférieure à la plage des harmoniques)
- des téléfréquences utilisées par les distributeurs d'énergie.

Afin d'éviter d'absorber ces téléfréquences et pour garantir en même temps que l'harmonique de rang 3 (150 Hz), générée par les charges monophasées actuelles ou à venir, ne soit renforcé, il est conseillé au client d'utiliser une fréquence d'accord de 135 Hz.

Incidences des harmoniques sur les condensateurs

Certains récepteurs (moteurs à vitesse variable, convertisseurs statiques, machines à souder, fours à arc, tubes fluorescents...) injectent des harmoniques qui surchargent les condensateurs. Il est alors indispensable de bien déterminer le type d'équipement de compensation comme détaillé dans le paragraphe ci-dessous :

type standard

■ type H (condensateurs surdimensionnés)

■ type SAH (condensateurs surdimensionnés associés à des selfs de protection).

Comment compenser?

Le choix d'un équipement de compensation s'effectue en fonction de la puissance réactive à installer, du mode de compensation et du type d'équipement nécessaire.

Puissance réactive à installer

La puissance de l'équipement Qc (kvar) se calcule de deux façons :

- à partir de l'énergie réactive facturée : facture mensuelle et feuillet de gestion(1)
- \blacksquare à partir de la puissance active et du facteur de puissance de l'installation : Qc (kvar) = P (kW) x (tan φ tan φ ')

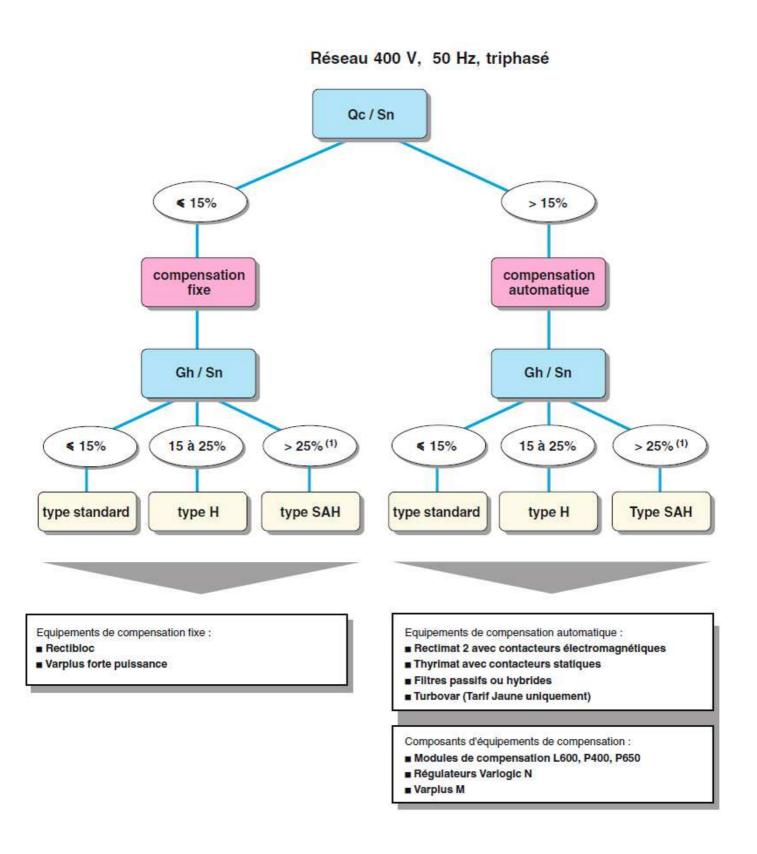
Nota : $\tan \varphi$ correspond au $\cos \varphi$ de l'installation avant compensation et $\tan \varphi$ ' au $\cos \varphi$ ' souhaité avec compensation.

Remarque : si Qc > 1000 kvar, il peut être envisagé de compenser au niveau moyenne et haute tension.

Compensation fixe ou automatique

Dans le cas de la compensation globale ou par ateliers, le critère de Qc/Sn permet de choisir entre un équipement de compensation fixe ou automatique. Le seuil de 15% est une valeur indicative conseillée pour éviter les effets de la surcompensation à vide :

- Qc/Sn ≤ 15% : compensation fixe
- Qc/Sn > 15% : compensation automatique.


Types d'équipement de compensation

Les équipements de compensation existent en trois types adaptés au niveau de pollution harmonique du réseau. Le rapport Gh/Sn permet de déterminer le type d'équipement approprié :

rapport Gh/Sn	type d'équipement recommandé
Gh/Sn ≤ 15%	les équipements de type standard conviennent
$15\% < \frac{Gh}{Sn} \le 25\%$	les équipements de type H sont conçus pour supporter les contraintes liées aux harmoniques. On utilise des condensateurs de tension de dimensionnement 470 V (réseau 400/415 V)
25% < Gh/Sn < 50%	les équipements de type SAH comportent des condensateurs de tension de dimensionnement 470 V associés à des selfs anti-harmoniques
Gh/Sn > 50%	l'installation de filtres est recommandée,

PARTIE A

Détermination du type de compensation

PARTIE A

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique Session 2012 Epreuve : E2	BAC PRO ELEEC	Code : 1206-EEE EO	Dossier technique	Session 2012	Epreuve : E2	Page: 15 / 42
--	---------------	--------------------	-------------------	--------------	--------------	---------------

Rectimat 2, armoire 2

Rectimat 2, armoire 3

Caractéristiques :

■ tension assignée : 400/415 V

■ tension de dimensionnement des condensateurs :

470 V, triphasée 50 Hz

■ rang d'accord : 2,7 (135 Hz) ou 4,3 (215 Hz)
■ tolérance sur valeur de capacité : -5 %, +10 %

classe d'isolement :

□ 0,69 kV

□ tenue 50 Hz 1 min. : 2,5 kV

■ courant maximal admissible (400 V):

□ à 135 Hz : 1,12 ln □ à 215 Hz : 1,27 ln

■ air ambiant autour de l'équipement :

□ température maximale : 40 °C

 \Box température moyenne sur 24 h : 35 °C

□ température moyenne annuelle : 25 °C

□ température minimale : -5 °C

 degré de protection : IP21D (excepté IP00 sur face inférieure côté sol)

■ transformateur 400/230 V intégré

■ protection contre les contacts directs (porte ouverte)

■ couleur : □ tôle : RAL 9002 □ bandeau : RAL 7021

normes: IEC 60439-1, EN 60439-1.

Rectimat 2, type SAH

Présentation

Les batteries Rectimat 2 sont des équipements de compensation automatique qui se présentent sous la forme d'armoire.

Les batteries Rectimat 2 type SAH conviennent pour les réseaux fortement pollués (25 % < Gh/Sn ≤ 50 %).

Rectimat 2 existe également avec disjoncteur de tête intégré (consuter votre agence).

Options (sur demande, consulter votre agence):

- talon de compensation fixe
- extension
- délestage (EJP, normal-secours)
- raccordement par le haut.

Installation:

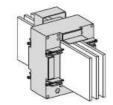
- fixation : au sol ou sur réhausse (accessoire)
- raccordement des câbles de puissance par le bas sur plages
- le TI (5 VA sec. 5 A), non fourni, est à placer en amont de la batterie et des récepteurs
- il n'est pas nécessaire de prévoir une alimentation 230 V/50 Hz pour alimenter les bobines des contacteurs.

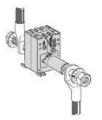
accord (Hz)	puissance 400 V (kvar)	régulation	réalisation	disjoncteur préconisé (non fourni)	réf.
215	25	2 x 12,5	armoire 2	NS100	52654
	37,5	3 x 12,5	armoire 2	NS100	52655
	50	4 x 12,5	armoire 2	NS100	52656
	62,5	5 x 12,5	armoire 2	NS160	52657
	75	3 x 25	armoire 2	NS160	52658
	100	4 x 25	armoire 2	NS250	52659
	125	5 x 25	armoire 3	NS250	52660
	150	6 x 25	armoire 3	NS400	52661
	150	3 x 50	armoire 3	NS400	52662
	175	7 x 25	armoire 3	NS400	52663
	200	4 x 50	armoire 3	NS400	52664
	250	5 x 50	armoire 3	NS630	52665
	300	6 x 50	armoire 3B	NS630	52666
	350	7 x 50	armoire 4	NS800	52667
	400	8 x 50	armoire 4	NS800	52668
	450	9 x 50	armoire 4	NS1000	52669
	500	10 x 50	armoire 4	NS1000	52670
	550	11 x 50	armoire 4	NS1250	52810
	600	12 x 50	armoire 4B	NS1250	52811
135	25	2 x 12.5	armoire 2	NS100	51544 Q
A.Tem	37.5	3 x 12.5	armoire 2	NS100	51545 Q
	50	4 x 12.5	armoire 2	NS100	51546 Q
	62.5	5 x 12.5	armoire 2	NS160	51547 Q
	75	3 x 25	armoire 3	NS160	51543 Q
	100	4 x 25	armoire 3	NS250	51549 Q
	125	5 x 25	armoire 3	NS250	51550 Q
	150	6 x 25	armoire 3	NS250	51551 Q
	150	3 x 50	armoire 3	NS250	51552 Q
	175	7 x 25	armoire 3	NS400	51553 Q
	200	4 x 50	armoire 3	NS400	51554 Q
	250	5 x 50	armoire 3B	NS630	51555 Q
	300	6 x 50	armoire 3B	NS630	51556 Φ
	350	7 x 50	armoire 4	NS630	51557 Q
	400	8 x 50	armoire 4	NS800	51558 Q
	450	9 x 50	armoire 4	NS800	51559 Q
	500	10 x 50	armoire 4	NS1000	51560 Q
	550	11 x 50	armoire 4B	NS1000	51561 Q
	600	12 x 50	armoire 4B	NS1000	51562 Q
	pour Rectimat sse H = 250 m	2 type SAH			réf. 52673
socle réhau	sse H = 250 m	m pour armo	ire 3B	526	72 + 52673
CONTRACTOR OF THE STATE OF	sse H = 250 m		1200000	19/06/08	2 x 52673
	sse H = 250 m			50670	2 x 52673

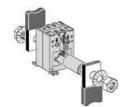
PARTIE A

BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 16 / 42

Transformateur d'intensité TC







TC à primaire traversant

calibre	nuice		۸/۸۱	câble isole	6 •	dimension	macca	référen	00	
(lp/5 A)	, personne (117)									
(IP3 A)				diamètre	section	pour barres)		TI	canon(2)	
		sion :		maxi. (1)	maxi. (1)	pour barroo,				plombable
	0,5	1	3	(mm)	(mm)					
40 A			1	21	120		200	16500	16550(3)	intágrá
50 A	: -	1.25		21	120	:	200	16451	16550	intégré
75 A	•	1.5	2.5	21	120		200	16452	16550	intégré
100 A	2	2.5	3.5	21	120		200	16453	16550	intégré
125 A	2.5	3.5	4	21	120		200	16454	16550	intégré
150 A	3	4	5	21	120		200	16455	16550	intégré
10071	1.5	5.5	6.5	22	150	30 x 10	270	16459	16551(4)	
200 A	4	5.5	6	21	120		200	16456	16550	intégré
	4	7	8.5	22	150	30 x 10	270	16460	16551	16552
		2	5			65 x 32	600	16476		intégré
250 A	6	9	11	22	150	30 x 10	270	16461	16551	16552
	2.5	5	8	35	240	40 x 10	430	16468		16553
	1	4	6			65 x 32	600	16477		intégré
300 A	7.5	11	13.5	22	150	30 x 10	270	16462	16551	16552
	4	8	12	35	240	40 x 10	430	16469		16553
	1,5	6	7			65 x 32	600	16478		intégré
400 A	10,5	15	18	22	150	30 x 10	270	16463	16551	16552
	8	12	15	35	240	40 x 10	430	16470		16553
	4	8	10			65 x 32	600	16479		intégré
500 A	12	18	22	22	150	30 x 10	270	16464	16551	16552
	10	12	15	35	240	40 x 10	430	16471		16553
	2	4	6			64 x 11	500	16473		intégré
						51 x 31				
	8	10	12			65 x 32	600	16480		intégré
600 A	14,5	21,5		22	150	30 x 10	270	16465	16551	16552
	4	6	8			64 x 11	500	16474		intégré
			4.00			51 x 31				
	8	12	15			65 x 32	600			intégré
800 A	12	15	20			65 x 32	600	16482		intégré
1000 A	15	20	25			65 x 32	600	16483		intégré
1250 A	15	20	25			65 x 32	600	16534		intégré
	12	15	20			84 x 34	700	16537		intégré
1500 A	20	12 25	30	:	:	127 x 38	1000	16540 16535	:	intégré intégré
1000 A	15	20	25	:	:	65 x 32 84 x 34	700	16538	:	intégré intégré
	10	15	-	:	:	127 x 38	1000	16541	:	intégré
2000 A	15	20	: -	:	: -	127 x 38	1000	16542	:	intégré intégré
2500 A	20	25	. 	. 	. 	127 x 38	1000	16543	. 	intégré
2300 A	30	50	60	. 	. 	127 x 52	1300	16545	•	intégré
3000 A	25	30		. 	. 	127 x 38	1000	16544	.	intégré
3000 A	40	60	60	:	:	127 x 52	1300	16546	:	intégré
4000 A	50	60	60	. 	. 	127 x 52	1300	16547	. 	intégré
5000 A	60	120		. 	. 	165 x 55	5000	16548	•	intégré
6000 A	70	120			 	165 x 55	5000	16549		intégré
2000 /1										

Choix d'un transformateur de courant

Le choix d'un TC dépend de 2 critères :

- le rapport de transformation lp/5 A
- le type d'installation.

Le rapport de transformation Ip/5 A

Il est recommandé de choisir le rapport immédiatement supérieur au courant mesuré maximum (In).

Exemple: In = 1103 A; choix du rapport = 1250/5.

Pour les petits calibres de 40/5 à 75/5 et dans le cas d'une utilisation avec des appareils numériques, il est conseillé de choisir un calibre supérieur exemple : 100/5. En effet les petits calibres sont moins précis et la mesure de 40 A, par exemple, sera plus précise avec un TC 100/5 qu'avec un TC 40/5.

Le type d'installation

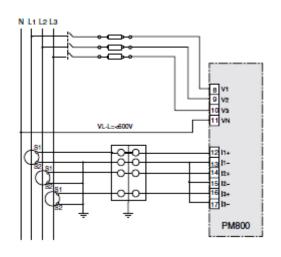
Le choix d'un modèle de TC dépend du type d'installation :

- câbles isolés
- montage sur barres.

Précaution importante

Ne jamais ouvrir le circuit secondaire d'un transformateur de courant lorsque le circuit primaire est sous tension.

Avant toute intervention sur le circuit secondaire, les bornes secondaires du transformateur de courant doivent être court-circuitées.


PARTIE A

Dossier technique **BAC PRO ELEEC** Code: 1206-EEE EO Session 2012 Epreuve: E2 Page: 17 / 42 et ressources

Centrale de mesure pm800

désignation centrale de	PM810 avec afficheur intégré	référence PM810MG
mesure avec afficheur intégré	PM820 avec afficheur intégré	PM820MG PM850MG PM870MG
centrale de mesure sans afficheur	PM810 sans afficheur, THD, alarmes, 80 Ko (avec PM810LOG)	PM810UMG
cano ameneur	PM820 sans afficheur, THD, alarmes, 80 Ko	PM820UMG
	PM850 sans afficheur, THD, alarmes, 800 Ko, capture d'onde	PM850UMG
	PM870 sans afficheur, THD, alarmes, 800 Ko, capture d'onde, détection des perturbations	PM870UMG

Figure 4-6: Raccordement triphasé en étoile en 4 fils, avec raccordement direct de la tension et 3 TC

type de mesure

Symbole	Description
_ _	Organe de coupure
()	Fusible
<u>_</u>	Тегге
\$1 \$2	Transformateur de courant
0000	Bloc court-circuiteur

		PM700	PM700P	PM710	PM750	PM810	PM820	PM850	PM870
			1500 1500 1500			The second second	238 102 238 103 238 103 238 104		
indice de mesure	(IM)	521	521	521	541	641	772	772	774
dasse précision e	n énergie	1%	1 %	1 %	0,5 %	0,5 %	0,5 %	0,5 %	0,5 %
affichage kWh									
énergie E	active		•				•		
-	réactive		•						
	apparente		•				•		
compteur partiel									
ortie impulsionne	elle		2	-	-	1	1	1	1
J, I, P, Q		•	-	-	-	-	-	-	•
argraphe		•	-	•	-	-	-		•
grands afficheurs		•	-	-	-	•	•	-	
Modbus RS485			-	-	•	•	•	-	•
distorsion	global	•	-	-	-	•	-	-	•
narmonique THD	rang par rang			-	-	-	31	63	31
nterharmoniques			-	-	-	-	-	-	
détection des tran-	sitoires (< 1 µs)				-	-			
nesure du Flicker					-	-			
courant neutre		•	-	-	•	•	•	-	•
aleurs instantané	es mini/maxi	•	-	-	•	•	-	-	•
entrée logique					2	13 max	13 max	13 max	13 max
sortie logique				-	1	9 max	9 max	9 max	9 max
capacité mémoire							80 ko	800 ko	800 ko
ournaux, données	s, événements						•	•	-
qualité énergie		•	-		•	•	-	-	
capture d'onde									
courbe de tendanc	ce								•
creux et saut de te	ension								•
page		D28				D30			
BAC PRO	ELEEC	Code	: 1206-E	EEE EC	et	ressour	ces	Sessio	n 2012

PM800MG

PARTIE B

Epreuve : E2 | Page : 18 / 42

Communication

Passerelle EGX100

désignation passerelle Ethernet EGX100 référence EGX 100MG

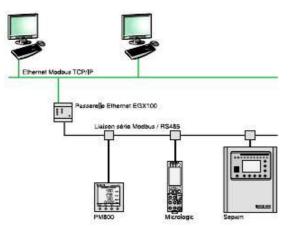
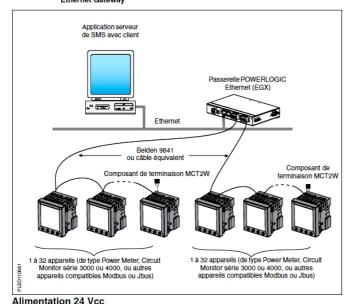
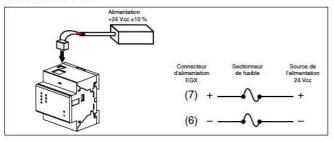




Figure 5-7: Power Meters raccordés à Ethernet à l'aide d'une passerelle POWERLOGIC Ethernet Gateway

L'EGX100 sert de passerelle Ethernet pour les appareils de l'offre PowerLogic® System et éventuellement à d'autres appareils communicant sous protocole Modbus. La passerelle EGX100 offre l'accès complet à toutes les informations d'état et de mesure des appareils raccordés, par exemple via les logiciels de gestion d'énergie dont PowerView installés sur PC.

Logiciels de gestion de l'énergie

Les logiciels de gestion de l'énergie électrique sont préconisés comme type d'interface utilisateur : ils permettent l'accès à toutes les informations d'état et de mesure. Il réalise également des rapports de synthèse.

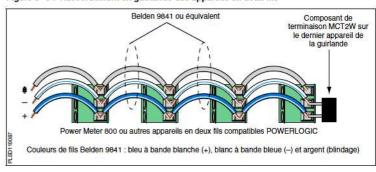
Configuration via un réseau Ethernet

Une fois la passerelle EGX100 connectée à un réseau Ethernet, on peut y accéder en entrant son adresse IP dans un navigateur Web standard pour :

- spécifier l'adresse IP, le masque de sous-réseau et l'adresse de passerelle pour la passerelle EGX
- configurer les paramètres du port série (vitesse de transmission, parité, protocole, mode, interface physique et délais d'attente)
- créer des comptes utilisateurs
- créer ou mettre à jour la liste des produits connectés ainsi que leurs paramètres de communication Modbus ou PowerLogic[®]
- configurer le filtrage IP pour contrôler l'accès à des appareils série
- · accéder aux données de diagnostic pour les ports série et Ethernet
- mettre à jour le logiciel embarqué.

Configuration via une connexion série

Pour la configuration série, on utilise un PC connecté à la passerelle EGX100 via une liaison RS232. Cette configuration permet de définir les paramètres suivants :

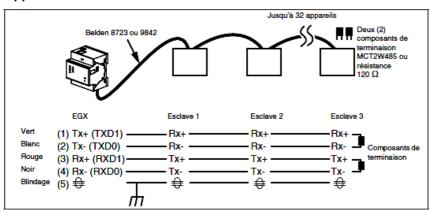

- adresse IP, masque de sous-réseau et adresse de passerelle pour la passerelle EGX
- langue utilisée pour la session de configuration.

ports liaison	nombre de ports	1		
série	types de ports	RS232 ou RS485 (2 fils ou 4 fils), selon configuration		
	protocole	Modbus RTU/ASCII		
		PowerLogic* (SY/MAX), JBUS		
	vitesse de transmission maxi.	38 400 ou 57 600 bauds selon configuration		
	nombre maxi. d'appareils sur le réseau	32		
port Ethernet	nombre de ports	1		
	types de ports	1 port 10/100 Base TX (802.3af)		
	protocole	HTTP, SNMP, FTP,		
		Modbus TCP/IP, SNTP, SMTP		
	vitesse de transmission	10/100 MB		

Appareils 2 fils

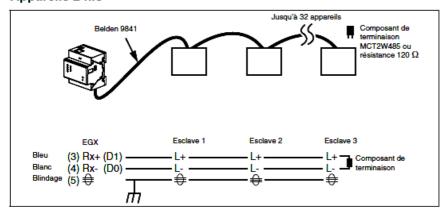
Pour raccorder en guirlande le Power Meter à un autre appareil POWERLOGIC en deux fils, reliez les bornes du circuit de communication RS485 du Power Meter aux bornes correspondantes de l'appareil suivant. En d'autres termes, reliez la borne + du Power Meter à la borne + de l'appareil suivant, la borne – à la borne – et la borne de blindage à la borne de blindage, comme le montre la Figure 5–3.

Figure 5-3: Raccordement en guirlande des appareils en deux fils


PARTIE B

BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 19 / 42

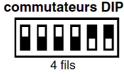
Câblage RS485


REMARQUE: Pour une protection efficace contre les surtensions, nous recommandons de raccorder directement le fil de blindage à une terre externe en un point unique.

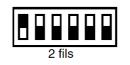
Appareils 4 fils

REMARQUE: Le code des couleurs indiqué correspond au câble Belden 8723. Le code des couleurs pour le câble Belden 9842 est Bleu/blanc (Tx+), Blanc/bleu (Tx-), Orange/blanc (Rx+) et Blanc/orange (Rx-).

Appareils 2 fils


Distances maximales de raccordement en guirlande

Vitesse de transmission	Distance max. pour 1 à 16 appareils	Distance max. pour 17 à 32 appareils
1200	3048 m	3048 m
2400	3048 m	1524 m
4800	3048 m	1524 m
9600	3048 m	1219 m
19200	1524 m	762 m
38400	1524 m	457 m


REMARQUE: Ce tableau est fourni à titre indicatif.

Polarité et terminaison RS485

Tx Rx Rx- Rx+ - + ON OFF 1 2 3 4 5 6 Polarité Terminaison

Configuration des

HAUT/ BAS/ON OFF

La configuration des commutateurs DIP indiquée est la configuration recommandée pour les guirlandes 4 fils et 2 fils. Les réglages du commutateur DIP 2 fils sont utilisés par défaut.

Communication

Passerelle EGX100

PARTIE B

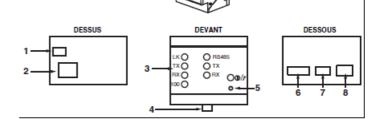
DESCRIPTION

- 1. Connexion de l'alimentation 24 Vcc
- Connexion 10/100BaseTx (802.3af)
- 3. Voyants LED:

Communication

Passerelle EGX100

Ethernet :


- LK : liaison active
- TX : envoi de données en cours
- · RX : réception de données en cours
- 100 : vitesse de transmission. 100 Mb = ON, 10 Mb = OFF

Série

- RS485 : mode RS485 = ON, mode RS232 = OFF
- TX : envoi de données en cours
 RX : réception de données en cours

Alimentation/état

- 4. Déblocage du rail DIN
- Bouton de réinitialisation (appuyez sur ce bouton pour redémarrer l'EGX encourue)
- 6. Connexion RS485
- 7. Commutateurs DIP
- 8. Connexion RS232

Configuration Ethernet à l'aide d'un navigateur Web

1. Déconnectez votre ordinateur du réseau.

REMARQUE: Une fois déconnecté du réseau, votre ordinateur doit utiliser automatiquement l'adresse IP par défaut 169.254.###.### (### = 0 à 255) et le masque de sous-réseau par défaut 255.255.0.0. Si l'adresse IP n'est pas automatiquement configurée, contactez votre administrateur réseau pour configurer une adresse IP statique.

2. Branchez un câble croisé Ethernet entre la passerelle EGX et l'ordinateur.

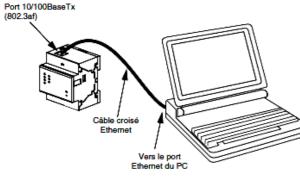


Tableau 1 : Paramètres Ethernet et TCP/IP de la passerelle EGX

	Option	Description	Valeurs
	Format de trame	Sélectionne le format des données envoyées à	Ethernet II, 802.3 SNAP
	Torrial de traine	travers une connexion Ethernet.	Par défaut : Ethernet II
	Type de support	Définit la connexion Ethernet physique.	 10T/100Tx Auto 10BaseT-HD 10BaseT-FD 100BaseTx-HD 100BaseTx-FD
Ξ			Par défaut : 10T/100Tx Auto
	Adresse IP	Saisie de l'adresse IP statique de la passerelle EGX. REMARQUE : Si vous saisissez une adresse	0.0.0.0 à 255.255.255.255 Par défaut : 169.254.0.10
		IP déjà utilisée, le système vous demande d'en saisir une autre.	Fai deladi : 105.254.0.10
	Masque de sous-	Saisie de l'adresse IP Ethernet du masque de	0.0.0.0 à 255.255.255.255
	réseau	sous-réseau.	Par défaut : 255.255.0.0
	Passerelle par	Saisie de l'adresse IP de la passerelle (routeur)	0.0.0.0 à 255.255.255.255
	défaut	utilisée pour les communications sur réseau étendu.	Par défaut : 0.0.0.0

- 3. Lancez Internet Explorer (version 6.0 ou ultérieure).
- 4. Dans le champ Adresse, tapez 169.254.0.10 et appuyez sur Entrée.
- Tapez Administrator pour le nom d'utilisateur et Gateway pour le mot de passe. Cliquez ensuite sur OK. Les noms d'utilisateur et les mots de passe sont sensibles à la case.
- 6. Cliquez sur Configuration.
- Si la page « Ethernet & TCP/IP » n'est pas ouverte, cliquez sur Ethernet & TCP/IP dans le menu à
 gauche de la page.
- Sélectionnez le format des trames et de type de support (voir Tableau 1 pour la description de chaque option).
- Tapez l'adresse IP, le masque de sous-réseau et l'adresse du routeur attribués à la passerelle EGX par votre administrateur réseau (voir le Tableau 1 pour la description de chaque option). Cliquez ensuite sur Appliquer.
- 10. Reconnectez votre ordinateur au réseau. Si vous avez affecté une adresse IP statique à votre ordinateur à l'étape 1, vous devez rétablir les paramètres d'origine de votre ordinateur avant de reconnecter l'ordinateur au réseau.

Tableau 2 : Paramètres de configuration Liaison Série

Paramètre	Options	Par défaut
Mode	Maître, Esclave	Maître
Interface physique	RS485 4 fils, RS485 2 fils, RS232	RS485 2 fils
Mode de transmission	Mode Maître: Automatique ^① , Modbus ASCII Mode Esclave: Modbus RTU, Modbus ASCII	Mode Maître: Automatique Mode Esclave: Modbus RTU
Vitesse de transmission	2400, 4800, 9600, 19200, 38400, 56000 ² , 57600 ²	19200
Parité	Aucune, paire	Aucune

PARTIE B

BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 21 / 42

Raccordement d'une prise type RJ45 :

Le câblage informatique ou téléphonique nécessite l'utilisation de connecteurs normalisés pour le raccordement des différents matériels. On trouve en téléphonie des prises du type RJ 11 (4 contacts), des prises RJ 12 (6 contacts), et des prises du type RJ45 (8 contacts). La RJ12 peut être raccordée sur une embase RJ45. En câblage informatique, on utilise la RJ45.

Principales conventions de câblage RJ45 :

Repére broche	Signaux	EIA/TIA 568A	Paire	EIA/TIA 568B	Paire
1	TD(+) Output	Blanc Vert	P2	Blanc	P3
				Orange	
2	TD(-) Output	Vert	P2	Orange	P3
3	RX(+) Input	Blanc Orange	P3	Blanc Vert	P2
4	Affectation libre	Bleu	P1	Bleu	P1
5	Affectation libre	Blanc Bleu	P1	Blanc Bleu	P1
6	RX(-) Input	Orange	P3	Vert	P2
7	Affectation libre	Blanc Marron	P4	Blanc	P4
				Marron	
8	Affectation libre	Marron	P4	Marron	P4

Brochage standard des cordons :

- Câble RJ45 droit :

C'est le câble le plus répandu, il est utilisé pour le branchement d'un poste informatique au connecteur réseau et la réalisation des cordons de brassage. On utilise la convention 568B aux deux extrémités du câble.

- Câble RJ45 croisé:

Utilisé pour raccorder 2 postes informatiques en direct. Par rapport au câble précédent des paires sont croisées.

PARTIE B

BAC PRO ELEEC Code : 1	206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 22 / 42
------------------------	------------	---------------------------------	--------------	--------------	----------------

Détermination de la section des conducteurs de phase :

Les tableaux ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit. Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur. Pour obtenir la section des conducteurs de phase, il faut :

- ■déterminer une lettre de sélection qui dépend du conducteur utilisé et de son mode de pose
- déterminer un coefficient K qui caractérise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les facteurs de correction, K1, K2, K3, Kn et Ks :

- le facteur de correction K1 prend en compte le mode de pose
- le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte
- le facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant
- le facteur de correction du neutre chargé Kn
- le facteur de correction dit de symétrie Ks.

Lettre de sélection

type d'éléments conducteurs	mode de pose	lettre de sélection
conducteurs et câbles multiconducteurs	■ sous conduit, profilé ou goulotte, en apparent ou encastré ■ sous vide de construction, faux plafond ■ sous caniveau, moulures, plinthes, chambranles	В
	■ en apparent contre mur ou plafond ■ sur chemin de câbles ou tablettes non perforées	С
câbles multiconducteurs	■ sur échelles, corbeaux, chemin de câbles perforé ■ fixés en apparent, espacés de la paroi ■ câbles suspendus	E
câbles monoconducteurs	■ sur échelles, corbeaux, chemin de câbles perforé ■ fixés en apparent, espacés de la paroi ■ câbles suspendus	F

Facteur de correction Kn

(conducteur neutre chargé) Selon norme NF C 15-100 § 523.5.2

■ Kn=0.84

Facteur de correction K1

lettre de sélection	cas d'installation	K1
В	■ câbles dans des produits encastrés directement dans des matériaux thermiquement isolants	0,70
	■ conduits encastrés dans des matériaux thermiquement isolants	0,77
_	■ câbles multiconducteurs	0,90
	■ vides de construction et caniveaux	0,95
С	■ pose sous plafond	0,95
B, C, E, F	■ autres cas	1

Facteur de correction de symétrie Ks (selon la norme NF C 15-105 §B.5.2 et le nombre de câbles en parallèle)

- Ks=1 pour 2 et4 câbles par phase avec respect de la symétrie
- Ks=0,8 pour 2, 3, et 4 câbles par phase si non respect de la symétrie

Facteur de correction K2

lettre de	disposition des	facte	facteur de correction K2 nombre de circuits ou de câbles multiconducteurs														
sélection	câbles jointifs	nom	bre de	circ	uits o	u de c	âbles	multi	cond	ucteu	rs						
		1	2	3	4	5	6	7	8	9	12	16	20				
в, с	encastrés ou noyés dans les parois	1,00	0,80	0,70	0,65	0,60	0,57	0,54	0,52	0,50	0,45	0,41	0,38				
С	simple couche sur les murs ou les planchers ou tablettes non perforées	1,00	0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	0,70						
	simple couche au plafond	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	0,61						
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	0,72						
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78	0,78	·					

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

- 0,80 pour deux couches
- 0,73 pour trois couches
- 0,70 pour quatre ou cinq couches.

Facteur de correction K3

températures	isolation	isolation													
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)												
10	1,29	1,22	1,15												
15	1,22	1,17	1,12												
20	1,15	1,12	1,08												
25	1,07	1,06	1,04												
30	1,00	1,00	1,00												
35	0,93	0,94	0,96												
40	0,82	0,87	0,91												
45	0,71	0,79	0,87												
50	0,58	0,71	0,82												
55	-	0,61	0,76												
60	-	0.50	0.71												

PARTIE C

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 23 / 42

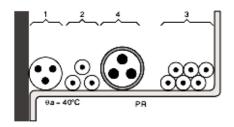
Détermination de la section d'un conducteur neutre chargé :

Les courants harmoniques de rang 3 et multiples de 3 circulant dans les conducteurs de phases d'un circuit triphasé s'additionnent dans le conducteur de neutre et le surchargent.

Dans ce cas, pour des sections de phase>16mm² en cuivre ou 25mm² en aluminium, on détermine la section en fonction du taux d'harmoniques de rang 3 dans les phases.

- Taux (ih3)<15%: neutre considéré comme non chargé
 La section du neutre (Sn) est égale à la section du neutre (Sph)
 Sn = Sph
- Taux 15%<(ih3)<33%: neutre considéré comme chargé
 <p>La section du neutre (Sn) est égale à la section du neutre (Sph)
 Mais un facteur de correction de courant admissible de 0,84 doit être pris en compte pour l'ensemble des conducteurs. (Sph₀ section de la phase calculée avant correction)
 Sn=Sph= Sph₀x1/0.84
- Taux (ih3)>33%: neutre considéré comme chargé et doit être surdimensionné pour un courant d'emploi égal à 1,45/0,84 fois le courant d'emploi dans la phase (environ 1,73)
 - o Câble multipolaire : Sn=Sph=Sph₀x1,45/0,84
 - Câbles unipolaires : Le conducteur de neutre doit être surdimensionné par rapport à la section des phases, avec :

Neutre : Sn=Sph₀x1,45/0,84
 Phase : Sph=Sph0/0,84


• Lorsque le taux n'est pas défini par l'utilisateur, on se place dans les conditions de calcul correspondant à un taux compris entre 15% et 33%.

Exemple d'un circuit à calculer selon la méthode NF C15-100 § 523.7

Un câble polyéthylène réticulé (PR) triphasé + neutre (4° circuit à calculer) est tiré sur un chemin de câbles perforé, jointivement avec 3 autres circuits constitués :

- d'un câble triphasé (1° circuit)
- de 3 câbles unipolaires (2° circuit)
 de 6 cables unipolaires (3° circuit): ce circuit est constitué de 2 conducteurs par phase.
 La température ambiante est de 40 °C et

le câble véhicule 58 ampères par phase. On considère que le neutre du circuit 4 est chargé.

La lettre de sélection donnée par le tableau correspondant est E.

Les facteurs de correction K1, K2, K3 donnés par les tableaux correspondants sont respectivement :

- K1 = 1
- K2 = 0,77
- K3 = 0.91

Le facteur de correction neutre chargé est :

■ Kn = 0,84.

Le coefficient total K = K1 x K2 x K3 x Kn est donc 1 x 0.77 x 0.91 x 0.84 soit :

■ k= 0,59

Détermination de la section

On choisira une valeur normalisée de In juste supérieure à 58 A, soit In = 63 A.

Le courant admissible dans la canalisation est Iz = 63 A. L'intensité fictive l'z prenant en compte le coefficient K est I'z = 63/0,59 = 106,8 A.

En se plaçant sur la ligne correspondant à la lettre de sélection É, dans la colonne PR3, on choisit la valeur immédiatement supérieure à 106,8 A, soit, ici:

- pour une section cuivre 127 A, ce qui correspond à une section de 25 mm².
- pour une section aluminium 122 A, ce qui correspond à une section de 35 mm².

Détermination de la section minimale

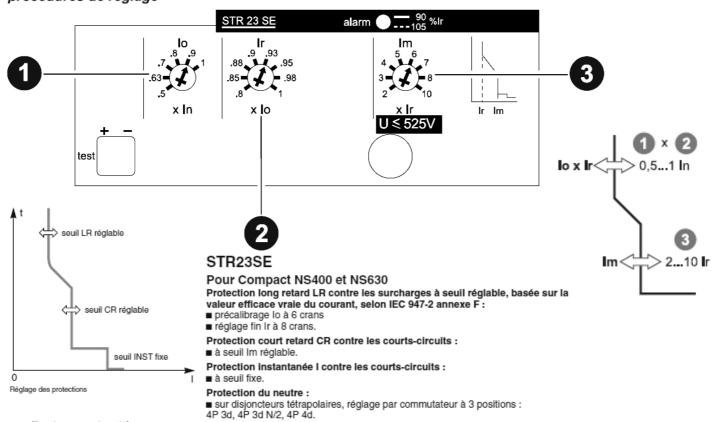
Connaissant l'z et K (l'z est le courant équivalent au courant véhiculé par la canalisation : l'z = lz/K), le tableau ci-après indique la section à retenir.

		caouto ou PV			butyle	ou PR o	u éthylè	ne PR		
lettre de	В	PVC3	PVC2		PR3		PR2			
sélection	С		PVC3		PVC2	PR3		PR2		
	E			PVC3		PVC2	PR3		PR2	
	F				PVC3		PVC2	PR3		PR2
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	
(mm²)	4	28	32	34	36	40	42	45	49	
	6	36	41	43	48	51	54	58	63	
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946		1 08
	630					855	1 005	1 088		1 25
section	2,5	16,5	18,5	19,5	21	23	25	26	28	
aluminium	4	22	25	26	28	31	33	35	38	
(mm²)	6	28	32	33	36	39	43	45	49	
	10	39	44	46	49	54	59	62	67	
	16	53	59	61	66	73	79	84	91	
	25	70	73	78	83	90	98	101	108	121
	35	86	90	96	103	112	122	126	135	150
	50	104	110	117	125	136	149	154	164	184
	70	133	140	150	160	174	192	198	211	237
	95	161	170	183	195	211	235	241	257	289
	120	186	197	212	226	245	273	280	300	337
	150		227	245	261	283	316	324	346	389
	185		259	280	298	323	363	371	397	447
	240		305	330	352	382	430	439	470	530
	300		351	381	406	440	497	508	543	613
	400					526	600	663		740
	500					610	694	770		856
	630					711	808	899		996

PARTIE C

BAC PRO ELEEC Code : 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 24 / 42	
----------------------------------	---------------------------------	--------------	--------------	----------------	--

Choix des disjoncteurs:


type de disjoncteur				NS250			NS400				NS630				
iombre de pôles				2, 3, 4	prometo 11 dans 110		3, 4				3, 4				
caractéristiques électriques selon IEC 6	60947-2 et EN 609	47-2	PRABLE O												
courant assigné (A)	In	40 °C		250	08	69 01	150/250	400		O' 0A A	630		(A) a		
ension assignée d'isolement (V)	Ui			750	97	U0 81	750	750		D. no u	750				
ension ass. de tenue aux chocs (kV)	Uimp			8	- 57	VC 1 - DE	8	8		J. 001	8				
ension assignée d'emploi (V)	Ue	CA 50/60 Hz		690	90	PG PG	690	690	79715-2004	U UN 11	690				
		CC		500			500	500	VOICE	LUBY HOV	500				
				N	Н	L	L	N	Н	L	N	Н	L		
oouvoir de coupure ultime	lcu	CA 50/60 Hz	220/240 V	85	100	150	150	85	100	150	85	100	150		
kA eff)			380/415 V	36	70	150	150	45	70	150	45	70	150		
e			440 V	35	65	130	130	42	65	130	42	65	130		
			500 V 525 V	22	50	70	100	30 22	50	100	30	50	70		
			660/690 V	8	35 10	50 20	100	10	35 20	100 75	10	35 20	50 35		
		CC	250 V (1 pôle)	50	85	100	75 100	50	85	100	50	85	100		
		CC	500 V (2 pôles série)	50	85	100	100	50	85	100	50	85	100		
oouvoir de coupure de série	Ics	(% Icu)	500 V (2 poles serie)	100 %	100 %	100 %		100%	100 %	100 %	100 %	100 %	100 %		
ptitude au sectionnement	103	(70 lCd)		■ TOO 70	100 /0	100 /6	■ and	10070	100 70	100 /0	100 /0	100 /6	100 /0		
catégorie d'emploi				A	A	A	A	Ā	A 1214	A	A	A	A		
endurance (cycles F-O)		mécanique		20000	0001 0	na no	15000	pae	to 001014	to comme	15000		1		
(0)0.00.		électrique				AND LIKE	12000		- WO LOW	- congression	8000				
			440 V - In	20000	anth's	ann kasari	6000				4000				
caractéristiques électriques selon Nem	a AB1														
pouvoir de coupure (kA)			240 V	85	100	200	200	85	100	200	85	100	200		
·			480 V	35	65	130	130	42	65	130	42	65	130		
			600 V	20	35	50	50	20	35	50	20	35	50		
protection (voir pages suivantes)			Market												
protection contre		déclencheur inte	erchangeable								-				
es surintensités (A)	lr	courant de régla		13 / 250)		100 / 250	160 / 4	00		250/6	30			
protection différentielle		dispositif addition	nnel Vigi			(8118)	nl x 1 s 4.0					100	A) memed		
déclencheur électronique		STR22SE								SEX B.T.					
		long retard	Ir	0,4 à Ir			081	1000				out and out of the	e) maman		
		court retard	Im	2 à 10	lr			11.01		11 X 0					
		temporisation		sans			3.8	inir	B	7.2 x lr					
		seuil instantané		12 In			3								
		STR23SE	se mail and a				•				•				
		long retard	lr				0,4 à In			The G	0,4 à Ir	1			
		court retard	lm	rectrolun	ar diode d	inarge pa	2 à 10 lr				2 à 10	ir sauen	ation lumi		
		temporisation		d epsige	seull de r	np % 06	sans				sans		narge		
		seuil instantané	Y g				11 ln				11 ln				
		STR23SV					•				•				
		long retard	Ir	_		(6)1	0,4 à In			- 17	0,4 à lr		A) Inomori		
		court retard	Im				2 à 10 lr			noisioés	2 à 10	ir			
		temporisation					fixe	01		en some	fixe	(4	em) noites		
		seuil instantané					11 ln		ed to a production of the last		11 ln				
		STR53UE	1-				0.4 à la				0431				
		long retard	lr				0,4 à In			- 17	0,4 à lı				
		court retard	Im	-			1,5 à 10 lr				1,5 à 1		a) tnomeri		
		temporisation seuil instantané		timil ash a	sanir compts	o son audi	8 crans 1,5 à 11 ln	<u> </u>	学覧日 051 691 年 日,90 A 70	3 60 °C a	8 crans		 d'utilisation surcharges 		
							1,5 a 11 III				1,5 a 1				
		STR53SV	Ir				0,4 à In				■ 0,4 à lı	1			
		long retard court retard	Im	_			1,5 à 10 lr				1,5 à 1				
		temporisation	411	4.4.1			8 crans								
		seuil instantané					1,5 à 11 ln				8 crans 1,5 à 11 In				
			tection moteur)												
		long retard	Ir	0,6 à 1lr	n réglable (10 crans)									
		court retard	lm	13 lr	-5.00.0 (1								
		manque de pha													
		seuil instantané		15 In											
			tection moteur)												
		long retard				0,8 à 1 In réglable (10 crans)					0,8 à 1 In réglable (10 crai				
		court retard				6 à 13 lr					6 à 13 lr				
		manque de pha	lm se	_							•				
				_							15 ln				

PARTIE C

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 25 / 42

STR trip units setting proceedings déclencheurs STR procédures de réglage Compact NS400-630 SNS400-630

STR 23SE U - 525V STR 23SV U > 525V

adjust current setting

règlez les courants

4	00A									 630A								
	2 0 °	1	.98	.95	.93	.9	.88	.85	.8	2 0 ¹	1	.98	.95	.93	.9	.88	.85	.8
	1	400	392	380	372	360	352	340	320	1	630	617	598	585	567	554	535	504
	.9	360	353	342	335	324	317	306	288	.9	567	556	539	527	510	499	482	454
	.8	320	314	304	298	288	282	272	256	.8	504	494	478	468	454	443	428	403
	.7	280	274	266	260	252	246	238	224	.7	441	432	419	410	397	388	375	353
	.63	252	247	239	234	227	222	214	202	.63	397	389	377	369	357	349	337	317
	.5	200	196	190	186	180	176	170	160	.5	315	308	299	292	283	277	267	252

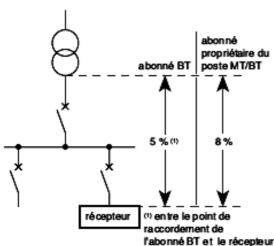
example:
In 630A

lo 1 0,5 0,63 0,7 0,8 0,9 1

presetting/préréglage: 504A

Ir 2 0,8 0,85 0,88 0,9 0,93 0,95 0,98 1

Ir = 0,9 x lo = 454A


Im 3 2 3 4 5 6 8 10

Im = 5 x Ir = 2270A PARTIE C

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 26 / 42

Chutes de tension admissibles :

La norme NF C 15-100 impose que la chute de tension entre l'origine de l'installation BT et tout point d'utilisation n'excède pas les valeurs du tableau ci-dessous

 $\cos m = 0.85$

Chute de tension maximale entre l'origine de l'installation BT et l'utilisation

	éclairage	autres usages (force motrice)
abonné alimenté par le réseau BT de distribution publique	3 %	5 %
abonné propriétaire de son poste HT-A/BT	6 %	8 % (1)

⁽¹⁾ Entre le point de raccordement de l'abonné BT et le moteur.

Détermination des chutes de tension admissibles :

La chute de tension en ligne en régime permanent est à prendre en compte pour l'utilisation du récepteur dans des conditions normales (limites fixées par les constructeurs des appareils).

Calcul de la chute de tension en ligne en régime permanent

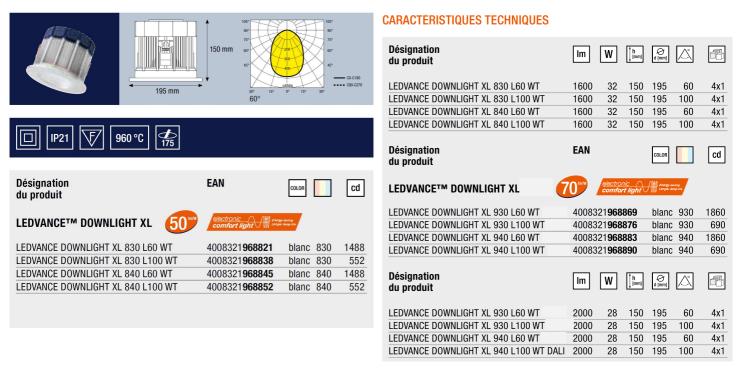
Formules de calcul de chute de tension

chute de tension	
(V CA)	en %
$\Delta U = 2 I_{B} L (R \cos \varphi + X \sin \varphi)$	100 ∆U/Un
$\Delta U = 2 I_g L (R \cos \varphi + X \sin \varphi)$	100 ∆U/Vn
$\Delta U = \sqrt{3} I_n L (R \cos \varphi + X \sin \varphi)$	100 ∆U/Un
	$\Delta U = 2 I_B L (R \cos \varphi + X \sin \varphi)$ $\Delta U = 2 I_B L (R \cos \varphi + X \sin \varphi)$

Un : tension nominale entre phases.

Vn : tension nominale entre phase et neutre.

Plus simplement, le tableau ci-dessous donne la chute de tension en % dans 100m de câble, en 400V/50Hz triphasé, en fonction de la section du câble et du courant véhiculé (In du récepteur). Ces valeurs sont données pour un cosφ de 0,85 dans le cas d'un moteur et de 1 pour un récepteur non inductif. Ces tableaux peuvent être utilisés pour des longueurs de câble L=100m : il suffit d'appliquer au résultat le coefficient L/100


Chute de tension dans 100 m de câble en 400 V/50 Hz triphasé (%)

câble	le cuivre											aluminium																
S (mm²)	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300	10	16	25	35	50	70	95	120	150	185	240	300
In (A)																												
1	0,5	0,4																										
2	1,1	0,6	0,4																									
3	1,5	1	0,6	0,4													0,4											
5	2,6	1,6	1	0,6	0,4												0,6	0,4										
10	5,2	3,2	2	1,4	0,8	0,5											1,3	0,8	0,5									
16	8,4	5	3,2	2,2	1,3	0,8	0,5										2,1	1,3	0,8	0,6								
20		6,3	4	2,6	1,6	1	0,6										2,5	1,6	1,1	0,7	0,5							
25		7,9	5	3,3	2	1,3	0,8	0,6									3,2	2	1,3	0,9	0,6	0,5						
32			6,3	4,2	2,6	1,6	1,1	0,8	0,5								4,1	2,6	1,6	1,2	0,9	0,6	0,5					
40			7,9	5,3	3,2	2,1	1,4	1	0,7	0,5							5,1	3,2	2,1	1,5	1,1	0,8	0,6	0,5				
50				6,7	4,1	2,5	1,6	1,2	0,9	0,6	0,5						6,4	4,1	2,6	1,9	1,4	1	0,7	0,6	0,5			
63				8,4	5	3,2	2,1	1,5	1,1	0,8	0,6						8	5	3,2	2,3	1,7	1,3	0,9	0,8	0,6			
70					5,6	3,5	2,3	1,7	1,3	0,9	0,7	0,5						5,6	3,6	2,6	1,9	1,4	1,1	0,8	0,7			
80					6,4	4,1	2,6	1,9	1,4	1	0,8	0,6	0,5					6,4	4,1	3	2,2	1,5	1,2	1	8,0			
100					8	5	3,3	2,4	1,7	1,3	1	0,8	0,7	0,65					5,2	3,8	2,7	2	1,5	1,3	1	0,95		
125						4,4	4,1	3,1	2,2	1,6	1,3	1	0,9	0,21	0,76				6,5	4,7	3,3	2,4	1,9	1,5	1,3	1,2	0,95	
160							5,3	3,9	2,8	2,1	1,6	1,4	1,1	1	0,97	0,77				6	4,3	3,2	2,4	2	1,6	1,52	1,2	1
200							6,4	4,9	3,5	2,6	2	1,6	1,4	1,3	1,22	0,96					5,6	4	3	2,4	2	1,9	1,53	1,3
250								6	4,3	3,2	2,5	2,1	1,7	1,6	1,53	1,2					6,8	5	3,8	3,1	2,5	2,4	1,9	1,6
320									5,6	4,1	3,2	2,6	2,3	2,1	1,95	1,54						6,3	4,8	3,9	3,2	3	2,5	2,1
400									6,9	5,1	4	3,3	2,8	2,6	2,44	1,92							5,9	4,9	4,1	3,8	3	2,6
500										6.5	5	4.1	3,5	3,2	3	2.4								6.1	5	4.7	3,8	3.3

PARTIE C

	BAC PRO ELEEC	Code : 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 27 / 42	
--	---------------	--------------------	---------------------------------	--------------	--------------	----------------	--

CARACTERISTIQUES TECHNIQUES LED DOWNLIGHT OSRAM

CARACTERISTIQUE DES LUMINAIRES

- Classe photométrique : C

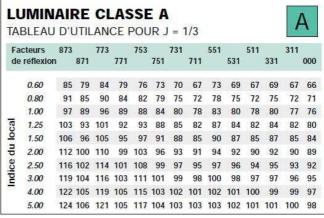
- Le rendement du luminaire : $\eta = 0.6$

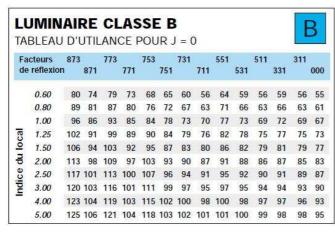
	Facteurs de dépréciation		
Nature de l'activité	Niveau d'empoussièrement	Facteur de maintenance	Facteur compensateur de dépréciation
Montages électroniques, locaux hospitaliers, bureaux, écoles, laboratoires	Faible	0,80	1,25
Boutiques, restaurants, entrepôts, magasins, ateliers d'assemblage	Moyen	0,70	1,4
Aciéries, industries chimiques, fonderies, polissages, menuiseries	Elevé	0,60	1,65

LES FACTEURS DE REFLEXION

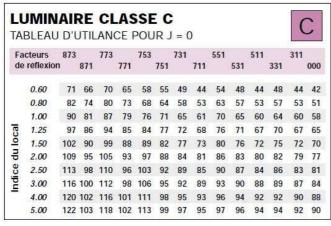
	Clair	Moyen	Sombre	Très sombre	Nul
Plafond	8	7	5	3	0
Murs	7	5	3	1	0
Plan utile	3	3	1	1	0

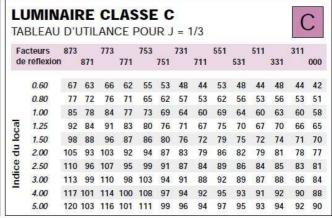
ECLAIREMENT RECOMMANDE

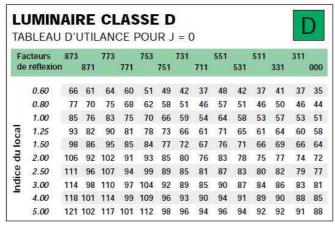

Hôtels	·
Réception, halls	250
Salles à manger	250
Cuisines	425
Chambres et annexes	250


PARTIE C

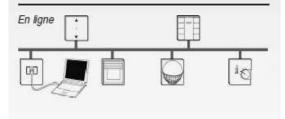

BAC PRO ELEEC	Code: 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 28 / 42
---------------	-------------------	---------------------------------	--------------	--------------	----------------

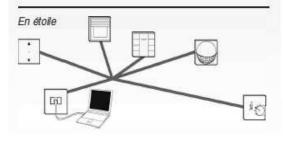

Tableaux d'utilance (en %)

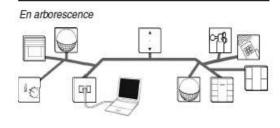




25000	cteurs réflexion	873	871	773	771	753	751	731	711	551	531	511	331	311	000
97791		8	~		- 10 m l		I STEPANI		9,999		999				
	0.60	62	58	61	57	49	47	41	37	47	41	37	41	37	35
	0.80	72	67	71	66	59	56	50	46	56	50	45	50	45	44
	1.00	80	74	79	73	67	64	58	53	63	57	53	57	53	51
ca	1.25	88	80	86	79	75	71	65	60	70	64	60	64	60	58
du loca	1.50	94	84	92	83	81	76	70	66	75	70	66	69	65	64
	2.00	102	91	99	89	90	83	78	75	82	77	74	77	74	72
Indice	2.50	107	94	104	93	96	88	84	80	86	83	80	82	79	77
nd	3.00	111	97	108	96	101	91	88	84	90	86	84	85	83	81
	4.00	116	100	112	99	106	95	92	89	93	91	88	89	87	85
	5.00	119	102	115	100	110	98	95	93	96	93	91	92	90	88


PARTIE D


BAC PRO ELEEC | Code : 1206-EEE EO | Dossier technique et ressources | Session 2012 | Epreuve : E2 | Page : 29 / 42


Principe de fonctionnement du système KNX

Câblage KNX

Le câblage au sein d'une même ligne peut être réalisé en ligne, en étoile ou en arborescence. Diverses autres combinaisons sont également possibles.

KNX est constitué d'une ligne de bus bifilaire et des appareils d'installation qui y sont connectés, dont des capteurs, des actionneurs et des composants système. Les capteurs reçoivent des informations et les transmettent au bus sous forme de télégrammes de données. Les capteurs sont par exemple des poussoirs KNX et des entrées binaires pour la connexion de contacts libres de potentiel.

Les actionneurs reçoivent les télégrammes de données et les transforment, par exemple, en signaux de commutation ou de réglage d'intensité.

Les alimentations électriques permettent de générer la tension du bus et les coupleurs sont utilisés pour relier les différents segments topologiques du système. La ligne de bus bifilaire permet de transmettre aussi bien la tension requise pour le système électronique des appareil du bus que des données numériques permettant la communication entre participant.

La ligne de bus est raccordée à chacun des appareils du bus. Généralement, les capteurs ne nécessitent que la ligne de bus. Par contre, les actionneurs nécessitent parfois une alimentation secteur 230/400 V pour commander les récepteurs. La ligne de bus et l'alimentation secteur sont strictement séparées l'une de l'autre, mais peuvent se retrouver dans le même chemin de câble.

Seule la boucle topologie est interdite.

Lors de la pose des lignes de bus, il est recommandé de respecter les distances suivantes :

- Longueur maxi entre l'alimentation électrique et les appareils reliés au bus : 350 m
- Longueur maxi entre deux appareils reliés au bus : 700 m
- Longueur totale des câbles au sein d'une ligne : 1000 m
- Longueur mini entre 2 alimentations au sein d'un même segment de ligne: 200 m

Les capteurs et les actionneurs sont sélectionnés en fonction de l'application requise et intègrent un module d'application avec le logiciel correspondant. Les logiciels d'application font partie intégrante de la base de données des produits Schneider Electric et sont installés dans les appareils connectés à l'aide du logiciel de planification et de mise en service ETS.

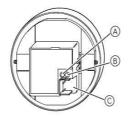
KNX est un système de bus décentralisé. Chaque appareil KNX possède son propre micro-contrôleur. Les appareils peuvent s'échanger des informations directement et en série par l'intermédiaire du bus, sans passer par un système central. Tous les appareils sont connectés au bus de la même manière (principe multi-maîtres). Le système CSMA/CA permet d'éviter les conflits entre télégrammes et la destruction de données.

PARTIE D

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 30 / 42

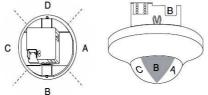
Notice technique "Régulation de lumière "Réf: MTN 630919

ARGUS Présence KNX avec


Notice d'utilisation

Réf. MTN6309...

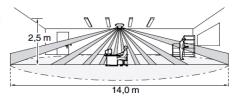
régulation de lumière et récepteur IR


Schneider

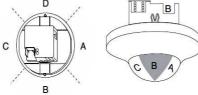
Raccordements, affichages et éléments de commande

- Touche de programmation
- LED de programmation
- Raccordement de bus

Disposition des capteurs de mouvement (A, B, C,D)



Sélection du lieu de montage

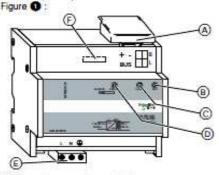

Afin que l'ARGUS fonctionne de manière optimale, il est impératif d'observer de nombreux critères lors de la sélection du lieu de montage.

- · Plus la distance entre la personne et l'ARGUS est faible, plus l'efficacité de détection des petits mouvements est importante.
- Dans le cas d'une personne en déplacement, la zone de détection est plus importante. Le sol constitue le niveau de référence.
- La hauteur de montage a une influence directe sur la portée et sur la sensibilité de l'ARGUS. La hauteur idéale est à 2.5 m.

La figure ci-dessous vous indique les portées de l'AR-GUS. Elles se réfèrent à des températures moyennes avec une hauteur de montage de 2,50 m. La portée peut fortement fluctuer en cas de variation des températures.

Hauteur de m	nontage Zone de détection
2,0 m	11 m
2,5 m	14 m
3,0 m	17 m

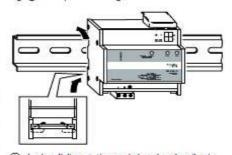
Notice technique " Alimentation KNX " Réf: MTN 68429 Voici les possibilités qu'offre


l'alimentation

L'alimentation 320 REG-K se raccorde à un système de bus. Elle met à disposition l'énergie nécessaire aux participants d'une ligne de bus. Chaque ligne de bus doit être équipée d'une alimentation propre.

L'alimentation fournit une très basse tension de sécurité (TBTS) stabilisée de 29 V CC ± 1 V. Le courant de sortie max, s'élève à 320 mA. Avec une répartition homogène des consommateurs le long de la ligne de bus, il est possible d'exploiter jusqu'à 64 paticipants avec une consommation standard de 5 mA par ligne. La longueur de câblage maximale entre l'alimentation et le participant le plus éloigné ne doit pas dépasser 350 m. Grâce à un interrupteur coulissant situé sur

l'alimentation (sous un couvercle à côté de la borne de bus), les participants raccordés à la ligne peuvent être réinitialisés. Le mode RESET de l'appareil est indiqué par la DEL rouge («RESET »).


Elle est prévue pour un montage sur rail DIN conformément à la norme NF EN 60715. Une barre de bus n'est pas requise.

- A Borne de raccordement de bus
- B DEL verte : DEL de fonctionnement
- © DEL rouge : court-circuit ou charge trop importante
- DEL rouge : DEL de réinitialisation (Reset)
- (E) Borne à vis
- (F) Interrupteur coulissant (sous le couvercle)

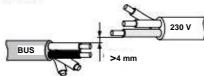
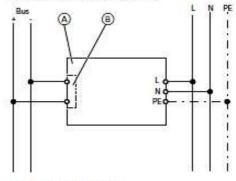

Comment installer l'alimentation

Fig. (2) (exemple de montage)

Insérez l'alimentation par le bas dans le rail puis poussez-la vers le haut. Poussez maintenant l'appareil vers le haut puis accrochez-le sur le rail (fig. 2).

Figure 8:

Raccordez le bus via la borne de raccordement de bus (fig. (A)) de telle manière que l'écart de sécurité de 4 mm soit respecté (fig. 6).


Attention:

L'écart de sécurité entre la ligne de bus et le câble d'alimentation en 230 V doit être impérativement respecté. Pensez à toujours monter le protège-câble sur la borne de raccordement de bus.

③ Connectez le raccord de l'alimentation (fig. 6) via les bornes à vis enfichables en vous conformant à l'exemple de raccordement.

Vous avez la possibilité de connecter les câbles aux bornes à vis enfichables aussi bien avant qu'après le montage de l'appareil.

Fig. (exemple de raccordement):

- (A) Alimentation 320 REG-K
- (B) Filtre intégré

Comment utiliser l'alimentation

Appliquez la tension du bus.

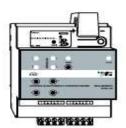
Passez l'interrupteur coulissant situé en dessous du couvercle (fig. (F)) en position « MARCHE » afin de mettre en service la tension de bus.

La DEL de fonctionnement vert («RUN», fig. (B)) signale que l'alimentation est opérationnelle. Si le courant de sortie est trop important, alors la DEL rouge de surintensité de courant (I>I_{max}) s'allume ou clignote. En cas de court-circuit entre les conducteurs rouge et noir de la ligne de bus, la DEL de fonctionnement vert (« RUN ») s'allume/clignote.

Remarque : Après l'élimination du court-circuit, vous devez commuter l'alimentation en mode RESET pendant env. 5 s.

Réinitialisation de la ligne de bus (RESET)

 Passez l'interrupteur coulissant situé en dessous du couvercle (fig. 1 (F)) en position « RESET » pendant env. 30 s afin de mettre hors service la tension de bus et de la réinitialiser

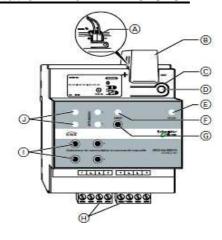

Le mode RESET de l'alimentation est indiqué par la DEL rouge («RESET », fig. (10)).

PARTIE D

Dossier technique **BAC PRO ELEEC** Code: 1206-EEE EO Session 2012 Epreuve: E2 Page: 31 / 42 et ressources

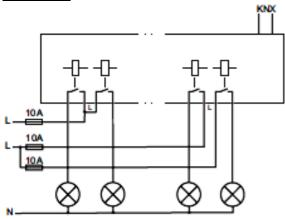
Notice technique " Actionneur de commutation " Réf: MTN 649204

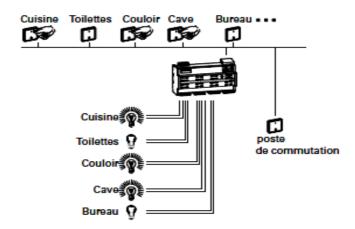
Actionneur de commutation REG-K/4x230/10 à commande manuel


Référence MTN649204

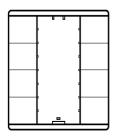
Fonction

L'actionneur de commutation REG-K/4x230/10 à commande manuel (nommé par la suite actionneur) peut, par lintermédiaire de KNX, commuter des consommateurs (via des contacts NO indépendants libres de potentiel).


Vous pouvez commuter l'actionneur en mode manuel et contrôler son bon fonctionnement même sans programmation sous ETS. En cas de panne du bus, le consommateur connecté peut être commandé directement via l'actionneur.


L'actionneur dispose d'un coupleur de bus. Il est prévu pour un montage sur rail DIN conformément à la norme NF EN 60715. Le raccordement bus s'effectue par la biais d'une borne de raccordement de bus. Il est alimenté en électricité par le biais du bus. Une barre de bus n'est pas requise.

- (A): Borne de raccordement de bus
- (B): Protège-câble
- © : Touche de programmation
- (D): DEL de programmation (rouge)
- (E): DEL de fonctionnement « RUN » (verte)
- (F): DEL de mode manuel (rouge)
- Touche de commutation en mode manuel
 Main »
- Bornes de canal pour le raccordement des consommateurs
- Touches de canal pour la commande manuelle du canal correspondant, ne répondent que si le mode manuel est activé.
- DEL d'état du canal (jaunes) pour le canal correspondant


Fonction

Notice technique " boutons poussoirs m-plan" réf: mtn 62.......

Bouton poussoir quadruple plus, M-Plan

Référence

MTN627844 MTN627819 MTN627814 MTN627860 Pour le montage du poussoir, vous avez besoin d'une plaque de finition M-Plan.

La description ci-après montre le montage du poussoir double. Le montage du poussoir simple et quadruple s'effectue en conséquence.

- Montez l'anneau porteur sur la boîte d'encastrement.
- Branchez le fil de bus rouge à la borne rouge (+) de la borne de bus, et le fil de bus noir à la borne de bus gris-foncé (-).
- Le câble de blindage et d'accompagnement ainsi que le fil blanc et le fil jaune de la conduite de bus ne sont pas nécessaires.
- Isolez le câble de blindage et d'accompagnement ainsi que les deux fils, et logez-les dans la boîte d'encastrement.
- Placez la borne de bus sur le raccordement du poussoir.
- Placez le poussoir dans la plaque de finition.
- Placez le poussoir avec la plaque de finition sur l'anneau porteur. Veillez à ce que le poussoir s'encrante.

PARTIE D

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 32 / 42

Motopompes:

Méthode de sélection

PERTES DE CHARGE

Tout liquide véhiculé à l'intérieur d'une tuyauterie est soumis à des contraintes et des frottements appelés "pertes de charge". Ces pertes de charge s'expriment en mètres de colonne d'eau (mCE) et sont liées à la section du tuyau, au débit véhiculé et à la température de l'eau.

ATTENTION:

La perte de charge est un facteur très important. Il vaut mieux éviter les trop grandes longueurs de tuyauterie de faible diamètre, et se méfier de l'entartrage dans les tuyauteries anciennes.

Choix des tuyaux

Pour connaître la dimension de la tuyauterie en fonction du débit, se servir du tableau suivant.

Tableau des choix de section

Dimension s conduite	20/27 3/4"	26/34 1"	33/42 11/4"	40/49 11/2"	50/60 2"	60/70 21/4"
Débit m³/h	0,7	1,5	3	4	8	10
Dimension s conduite	66/76 21/2"	80/90 3"	102/ 114 4"	125	150	175
Débit m³/h	15	20	36	60	90	140

En fonction de la dimension des tuyaux, et du débit, le tableau ci-contre permet de déterminer les pertes de charge.

Exemple:

• Débit : 2 m³/h

• Diamètre tuyauterie : 1" (26/34)

Longueur tuyauterie : 50 m

Pertes de charge par mètre de tuyau :

90 mm ou 0,09 M.C.E.

Pertes de charge totales :

 $0.09 \times 50 = 4.5 \text{ M.C.E.}$

Pertes en charge en mm.C.E. pour les tuyaux neufs

Débit en m³/h	15/21 1/2*	20/27 3/4"	26/34 1=	1000000000000	40/49 1* 1/2	12,420,000,000,000	MICHIEL THOUSE	66/76 2" 1/2	-1330 G 3100	102/ 114 4*	125	150	175
0,2	15	3		67.0	070		0.70	UZO	50	æ	87.0	U5/	æ
0,5	100	20	5	1	*	· ·	78	78	100	32	97	76	3
0,7	200	40	10	2	-	-	025	mas	26	8	350	025	8
1	400	80	21	5	2	S#3	22	200	<u> </u>	-	33	20	12
1,5	*	170	50	10	5	1	541	E#I	•	39	1911	7.F.	3
2		330	90	20	9	3	(E)	(E)	*	æ	30	160	3
3	-	15	210	45	22	6	3	1	B)) (5)	***	82	=
4		. a .	320	76	35	10	6	2	1	æ	330	UZ/	
5	33855	S#1	3	130	60	18	9	4	2	2.5%	(7)	1	(0)
6	22	82	12	170	80	25	13	5	3	23	S40	025	3
7	ş	12	12	250	120	35	17	7	3	- 12	3 8	20	÷
8	×	3	34	330	140	45	23	10	5	1	191	241	×
9	3	· · · ·	is i	30	190	57	28	12	6	2	30	(6)	33
10	3	87	85	25	230	70	35	15	7	2	25	äs:	×
12	-	25		223	330	100	50	22	10	3	1	30	=
15	1095	3	9	37	38 3	150	79	34	16	5	2	78	7,98,7
20	8	12	8	15V		260	140	60	28	8	3	1	8
30	÷	12	12	38	E#3	13431	315	135	63	19	6	2	1
40	×	3	34	191			Hell	240	112	33	11	4	2
50	96	: :e	28	30	3.00		(m)	375	175	52	17	7	3
60	- 20	88	85	25	·		R#S	7.5%	250	76	24	10	4
70				22			8 8 1	811	340	102	33	13	5
80	8	æ,	্ ্	87.0	0753	0.00	UZK	0.70	. 51	134	43	17	6
100	(30)	3	3	37	33		78	78	3	210	68	26	10
150	8	83		80	-	-	025	025	\$	23	153	58	22

Pertes en charges des accessoires :

Pour les coudes, clapets de retenue, clapets de pied, crépines, filtres, compter 2 mètres de longueur fictive de tuyau pour chaque accessoire.

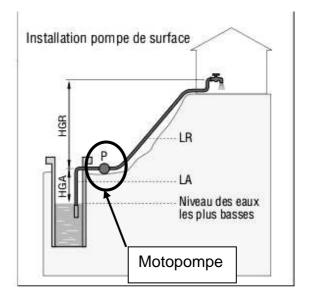
PARTIE E

BAC PRO ELEEC	Code : 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 33 / 42
---------------	--------------------	---------------------------------	--------------	--------------	----------------

Exemple de calcul pour la détermination d'une motopompe de surface :

Pour la détermination de la motopompe de surface, il est impératif de connaître :

Le débit (Q) en m³/h et la HMT (hauteur manométrique totale) en m.C.E (mètre colonne d'eau).


Je souhaite par exemple un débit **Q = 2 m³/h** à la sortie du robinet. Il me faut maintenant trouver la **HMT**.

La **HMT** se détermine de la façon suivante :

$$HMT = HGA + HGR + Pa + Pr + p$$

Avec:

HGA: Hauteur géométrique d'aspiration entre les plus basses eaux et l'axe de la pompe. Elle s'exprime en mètres. Dans notre exemple nous prendrons: **HGA = 3 mètres**.

HGR: Hauteur géométrique de refoulement, c'est la différence entre l'axe de la pompe et le point le plus élevé de la distribution, ici dans notre exemple c'est notre robinet. Elle s'exprime en mètre. Dans notre exemple nous prendrons : **HGR = 4 mètres**.

Pa: Pertes de charge dans la tuyauterie d'aspiration. Pour calculer ces pertes de charge, il nous faut connaître le diamètre de la tuyauterie à utiliser. Pour cela, on se réfère au premier tableau de la documentation précédente, qui préconise un diamètre de tuyauterie de 1" (26/34), pour un débit Q = 2 m³/h. Sur le deuxième tableau, nous avons pour un débit Q = 2 m³/h et un diamètre de tuyauterie de 1" (26/34), une perte de charge dans la tuyauterie de 90 millimètres de colonne d'eau (suivre les traits). Qu'il faut dans nos calculs transformer en mètres de colonne d'eau, soit 0,09 mCE. Sachant Que ma longueur de tuyauterie d'aspiration (LA) est de 7 mètres, que j'utilise une crépine (filtre), et un coude. Je dois rajouter 2 mètres de longueur fictive de tuyau (voir préconisation en bas du second tableau) par accessoires (crépine et coude) soit 4 mètres (2 accessoires x 2). Ce qui me fait une longueur totale de 11 mètres. Donc :

 $Pa = 0.09 \times 11 = 0.99 \text{ mètres}.$

Pr: pertes de charge dans la tuyauterie de refoulement. Nous gardons la même perte de charge dans la tuyauterie de 0,09 mCE. Sachant que ma longueur de tuyauterie de refoulement (LR) est de 60 mètres, je rajouterais 8 mètres de longueur de tuyau fictive, comme j'utilise 4 coudes (4 accessoires x 2 mètres). Ce qui me fait une longueur totale de 68 mètres. Donc : **Pr** = 0,09 x 68 = 6,12 mètres.

P: Pression utile (d'utilisation). Je prendrais dans notre exemple une pression utile **P = 2 bar**, soit

P =20 mètres (1 bar de pression, correspond à 10 mètres d'eau).

HMT = HGA + HGR + Pa + Pr + p

⇒ HMT = 3 + 4 + 0,99 + 6,12 + 20

⇒ HMT = 34,11 mètres

PARTIE E

BAC PRO ELEEC Code : 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve : E2 Page : 34 / 42

Pompes

Généralités

Pompes centrifuges, monocellulaires, horizontales, monoblocs

Applications

- Industrie
 refroidissement
- transfert
- circuit incendie
- services généraux
- Agriculture
- arrosage
- irrigation
- Bâtiment
- surpression sanitaire/incendie
- refroidissement
- Loisirs
- terrains de sport
- espaces verts

Conditions d'utilisation

- Brides de raccordement hydraulique et pattes de fixation conformes aux normes NFE 44-111 et EN 733 (DIN 24-255).
- Pour liquides clairs ou très légérement chargés (teneur maximum de particules solides en suspension 50 g/m3).
- Température du liquide véhiculé comprise entre - 10 °C et 110 °C.
- Température ambiante maximum : 40 °C

- Pression de service maximum: 16 bars
 Pression maximum à l'aspiration: 10 bars
 Alimentation électrique du moteur:
 triphasé 230/400 V ± 10% 50 Hz jusqu'à 2,2 kW inclus
 triphasé Δ 400 V ± 10% 50 Hz au-delà.

Descriptif des pompes LS

Désignations	Matières	Commentaires
Moteur	Asynchrone 3 000 min ⁻¹ ou 1 500 min ⁻¹	- Triphasé 230/400 V \pm 10 % - 50 Hz jusqu'à 2,2 kW inclus - Triphasé Δ 400 V \pm 10 % - 50 Hz au-delà - IP 55 - Classe F - Service S1
Corps de pompe	Fonte FGL 250	
Roue	Fonte FGL 250	
Fond	Fonte FGL 250	
Arbre	Acier inoxydable X33 Cr 13	
Garniture mécanique	Graphite/céramique Joint éthylène propylène	
Joints toriques	Ethylène propylène	

Désignation / Codification

LS	50	32	200	L	13	2
Désignation de la série	Diamètre de la bride d'aspiration en mm	Diamètre de la bride de refoulement en mm	Diamètre nominal de la roue en mm	Indice hydraulique	Puissance nominale moteur en kW	Polarité (vitesse moteur)

PARTIE E

Dossier technique **BAC PRO ELEEC** Code: 1206-EEE EO Session 2012 Epreuve: E2 Page: 35 / 42 et ressources

Pompes LS

Sélection

Débit nominal : 45 à 70 m3/h

	Code	Débit															kW	Intens	ité en A
Type	produit	en m³/h	24	30	36	39	42	45	48	51	55	60	70	80	90	100	Utile	Tri 230 V	Tri 400 V
LS 65 - 50 - 125 / 3 - 2	T 085 PC 01	(6)	21,2	20,5	19,5	19	18,5	18	17,2	16,8	15,5		0.0		0.0		3		6,3
LS 65 - 50 - 125 / 4,6 - 2	T 085 PC 02		25	24,5	23,8	23,5	23	22,7	22	21,8	20,8	19,5	16	2	10.70	-55	4,6		9,3
LS 65 - 50 - 160 / 4,6 - 2	T 085 PC 03	нмт	30	29,5	28,5	27,8	27	26,2	25,2	24,2	22,5	J	T.	-			4,6		9,3
LS 65 - 50 - 160 / 6,5 - 2	T 085 PC 04	en	39	38,4	37,9	37,6	37	36,5	35,7	35	34	32,5	10.70	-	1.550	- 15	6,5		12,5
LS 65 - 50 - 200L / 18,5 - 2	T 085 PC 05	MCE1						63	62,5	62	61	60	56	50	38		18,5	- 2	35
LS 65 - 50 - 200L / 22 - 2	T 085 PC 06		12.0	-	5 .	-	170		la.	72	71	70	66	61	54	40	22		43,5
LS 65 - 50 - 250L / 30 - 2	T 085 PC 07			10 g		T 25 1	4	- E	S (2)	85	84	83	81	80	76	70	30	¥ 1	55,5

^{1.} Hauteur manométrique totale (HMT) en mètres de colonne d'eau (MCE).

Débit nominal: 70 à 140 m³/h

	Code	Débit															kW	Inten	sité A
Type	produit	en m³/h	45	48	51	55	60	70	80	90	100	120	140	160	180	200	Utile	Tri 230 V	Tri 400 V
LS 80 -65 -125 / 3 - 2	T 086 PC 01		13	12,8	12,5	12,2	11,7	10,8	9,8		*		-				3	. Ja	6,3
LS 80 - 65 - 125 / 4,6 - 2	T 086 PC 02		7.1	-	17,5	17	16,8	16	14,7	13,2	12	-2	2.55	7:	-	- 50	4,6	15	9,3
LS 80 - 65 - 125 / 6,5 - 2	T 086 PC 03		-	*	23,7	23,5	23,2	22,5	21,5	20	18,8	15,7	•	-	-	*	6,5	3. 3.	12,5
LS 80 - 65 - 160 / 13 - 2	T 086 PC 04		•		38	37,7	37,5	36,5	35,5	34	32	28	22	-		75	13	12	24
LS 80 - 65 - 160 / 16 - 2	T 086 PC 05	MCE ¹	=		41	40,7	40,5	40	39,5	38	37	34	29,5	22,5			16	00 86	30,1
LS 80 - 65 - 200L / 22 - 2	T 086 PC 06					S#8	-	173	51	50	49	45	40	33		. 14	22	1.5	43,5
LS 80 -65 -200L / 30 - 2	T 086 PC 15		-					TE (· ·	57	55	53	47	41	32		30	65 65	55,5
LS 80 - 65 - 200L / 37 - 2	T 086 PC 07		-	**	-	1883	*	3 + 3)	-	12	63	60	55,5	50	43	35	37	125	67

^{1.} Hauteur manométrique totale (HMT) en mêtres de colonne d'eau (MCE).

3 000)
1111 D -1	1

Débit nominal: 140 à 180 m3/h

	Code	Débit												kW	Intens	ité en A
Туре	produit	en m³/h	70	80	90	100	120	140	160	180	200	220	250	Utile	Tri 230 V	Tri 400
LS 100 - 80 - 160 / 13 - 2	T 087 PC 01	1	30	29,8	29,2	28,5	27,5	24,5	21,5	18	(*)	(*e)	()**	13	(<u>*</u>	24
LS 100 - 80 - 160 / 16 - 2	T 087 PC 02	нтм	-		-	35,5	34	32	29	26	20			16	-	30,1
LS 100 - 80 - 200L / 22 - 2	T 087 PC 03	en	*:		A)	44	42	40	36	33	27	23	1.0	22		43,5
LS 100 - 80 - 200L / 30 - 2	T 087 PC 11	MCE ¹	7.0	ā.		5	52	50	47	43	39,5	34	1474	30	2574	55,5
LS 100 -80 -200L / 37 -2	T 087 PC 04		*	*			58,5	57	55	53	48	43	35	37	(14)	67

^{1.} Hauteur manométrique totale (HMT) en mêtres de colonne d'eau (MCE).

Remarque : les cases grisées expriment le point nominal de fonctionnement des pompes.

PARTIE E

Dossier technique **BAC PRO ELEEC** Code: 1206-EEE EO Session 2012 Epreuve: E2 Page: 36 / 42 et ressources

Moteurs asynchrones triphasés fermés Carter alliage aluminium LS Caractéristiques éléctriques

E1 - Grilles de sélection : mono-vitesse

IP 55 - S1 Cl. F - ΔT 80 K

3000 min	S															
					RÉ	SEAU	Δ 230	/ Y 40	0 V ou	u ∆ 400	V 50	Hz				
	Puissance nominale	Vitesse nominale	Moment nominal	Intensité nominale		Facteur de puissanc	ne		IE1 Rendement 60034-2-1;		Courant démarrage/ Courant	Moment démarrage/ Moment	Moment maximum/ Moment	Moment d'inertie	Masse	Bruit
		M				Cos φ					nominal	nominal M /M	nominal M,/M,		IM B3	LP
Type	P _N kW	N _N min ⁻¹	<i>M_N</i> N.m	I _{N (400V)} A	4/4	3/4	2/4	4/4	η 3/4	2/4	I _D /I _N	M_g/M_N	IM _M IM _N	kg.m²	kg	db(A)
LS 56 M	0,09	2860	0,3	0,44	0,55	0,45	0,4	54	45,2	37,1	5,0	5,3	5.4	0,00015	3,8	54
LS 56 M	0,12	2820	0,4	0,5	0,6	0,55	0,45	58,7	54	45,2	4,6	4,0	4,1	0.00015	3,8	54
LS 63 M	0,12	2790	0,6	0,52	0,75	0,65	0,55	67,4	66,9	59,3	5,0	3,3	2,9	0,00019	4,8	57
LS 63 M	0,25	2800	0,9	0,71	0,75	0,65	0,55	67,8	67,3	59,2	5,4	3,2	2,9	0,00025	6	57
LS 71 L	0,37	2800	1,3	0,98	0,8	0,7	0,6	68,4	67,6	63,9	5,2	3,3	3,9	0,00035	6,4	62
LS 71 L	0,55	2800	1,9	1,32	0,8	0,7	0,55	75,7	75,2	71,1	6,0	3,2	3,1	0,00045	7,3	62
LS 71 L	0,75	2780	2,6	1,7	0,85	0,75	0,65	74,6	75,8	73,1	6,0	3,3	2,9	0,0006	8,3	62
LS 80 L	0,75	2840	2,5	1,64	0,87	0,8	0,68	75,7	76,1	73,3	5,9	2,4	2,2	0,0007	8,2	61
LS 80 L	1,1	2837	3,7	2,4	0,84	0,77	0,65	77,3	78,3	76,4	5,8	2,7	2,4	0,0009	9,7	61
LS 80 L	1,5	2859	5,0	3,2	0,83	0,76	0,62	79,3	80	78,1	7,0	3,2	2,8	0,0011	11,3	61
LS 90 S	1,5	2870	5,0	3,4	0,81	0,72	0,58	80	79,5	75,9	8,0	3,9	4,0	0,0014	12	64
LS 90 L	1,8	2865	6,0	3,6	0,86	0,8	0,69	81,9	82,5	81,4	8,0	3,6	3,6	0,0017	14	64
LS 90 L	2,2	2862	7,3	4,3	0,88	0,83	0,73	82	83	82	7,7	3,7	3,3	0,0021	16	64
LS 100 L	3	2868	10,0	6,3	0,81	0,73	0,59	82,5	82,6	80,1	7,5	3,8	3,9	0,0022	20	66
LS 100 L	3,7	2850	12,5	8	0,85	0,76	0,62	82,7	82,2	77,2	8,6	0,0	0,0	0,0022	21	66
LS 112 M	4	2877	13,3	7,8	0,85	0,78	0,65	85	85,3	83,7	7,8	2,9	2,9	0,0029	24,4	66
LS 112 MG	5,5	2916	18,0	10,5	0,88	0,81	0,71	86,1	86,4	84,7	9,0	3,1	3,5	0,0076	33	66
LS 132 S	5,5	2916	18,0	10,5	0,88	0,81	0,71	86,1	86,4	84,7	9,0	0,0	0,0	0,0076	34,4	72
LS 132 S	7,5	2905	24,5	14,7	0,85	0,78	0,63	86	85,8	83,2	8,7	0,0	0,0	0,0088	39	72
LS 132 M	9	2910	29,5	17,3	0,85	0,8	0,71	87,9	88,5	87,5	8,6	2,5	3,5	0,016	49	72
LS 132 M	11	2944	35,7	20,7	0,86	0,81	0,69	88,2	88,3	86,7	7,5	2,7	3,4	0,018	54	72
LS 160 MP	11	2944	35,7	20,7	0,86	0,81	0,69	88,2	88,3	86,7	7,5	2,7	3,4	0,019	62	72
LS 160 MP	15	2935	48,8	28,4	0,85	0,79	0,71	89,3	89,7	88,6	8,1	3,0	3,5	0,023	72	72
LS 160 L	18,5	2934	60,2	33,7	0,87	0,83	0,75	90,09	90,6	90,0	8,0	3,0	3,3	0,044	88	72
LS 180 MT	22	2938	71,5	39,9	0,87	0,84	0,76	90,6	91,2	90,8	8,1	3,1	3,1	0,052	99	72
LS 200 LT	30	2946	97,2	52,1	0,9	0,87	0,82	91,5	92,1	91,7	8,6	2,7	3,4	0,089	154	73
LS 200 L	37	2950	120	65	0,89	0,87	0,82	92,1	92,6	92,3	7,4	2,6	3,0	0,12	180	73
LS 225 MT	45	2950	146	78	0,9	0,87	0,82	92,5	92,7	92,7	7,5	2,8	3,1	0,14	200	73
LS 250 MZ	55	2956	178	96	0,89	0,86	8,0	92,9	93,6	92,5	8,3	3,1	3,4	0,173	235	78
LS 280 SC	75	2968	241	129	0,9	0,87	0,82	93,5	93,6	93,1	8,5	2,6	3,4	0,39	330	79
LS 280 MC	90	2968	290	154	0,9	0,88	0,83	93,8	94,0	93,6	8,4	2,6	3,3	0,47	375	79
LS 315 SN	110	2964	354	184	0,92	0,9	0,86	94	94,2	93,9	8,6	2,7	3,4	0,55	445	80
LS 315 MP	132	2976	424	227	0,89	0,87	0,82	94,4	94,2	93,1	7,6	2,8	2,9	1,67	715	83
LS 315 MR	160	2976	513	271	0,9	0,88	0,84	94,6	94,6	93,7	7,6	2,9	3,1	1,97	820	83
LS 315 MR*	200	2982	640	350	0.87	0.86	0.82	94.8	94.3	92.9	9.3	3.8	3.9	1.97	845	83

PARTIE E

BAC PRO ELEEC Code : 1206-EEE EO	Dossier technique	Session 2012	Epreuve : E2	Page : 37 / 42
------------------------------------	-------------------	--------------	--------------	----------------

Variateurs de vitesse Altivar 61

Variateurs IP 20 et IP 54

encombrements (L x H x P) T2: 190 x 290 x 175 T3: 155 x 260 x 187 T4: 175 x 295 x 187 T5A: 210 x 295 x 213 T5B: 230 x 400 x 219 T6: 240 x 420 x 236 T7A: 240 x 550 x 266 T7B: 320 x 550 x 266 T8: 320 x 630 x 290 T9:320 x 920 x 377 T10:360 x 1022 x 377 T11:940 x 1190 x 977 T12:440 x 1190 x 377 T13:595 x 1190 x 377 T14:890 x 1390 x 377 T15: 1120 x 1390 x 377 tension d'alimentation

Variateurs IP 20 ▶60660 ◀

200...240 V CA.(3)

triphasé 380...480 V CA (3)

triphasé 500...690 V CA (3)(4)

degr	é	de	p۲	ot.	ect	ion	

entraînement fréquence de sortie type de contrôle

IP 20 pour les variateurs nus et IP 41 sur la partie supérieure 0,5...1600 Hz jusqu'à 37 kW et 0,5...500 Hz de 45 à 630 kW

200...240 V CA (3)

moteur asynchrone : loi quadratique kn², contrôle vectoriel de flux avec ou sans capteur, loi tension/fréquence (2 ou 5 points), économie d'énergie

moteur synchrone : contrôle vectoriel sans retour vitesse

surcouple transitoire 110 % à 120 % du couple nominal moteur pendant 60 secondes

gamme de v	ritesse	1100 en boacle ou	werte	-					
fonctions	nombre de vitesses présélectionnées	16							
CEM	classe A	filtre intégré							
	classe B	filtre externe en optio	×Π						
pulssance	0,27	ATV61H075M3	T2	-		-		-	
moteur	0,75	ATV61HU15M3	T2	ATV61H075M3	T2	ATV61H075N4 (3)	T2	-	
(kW)	1,5	ATV61HU22M3	Т3	ATV61HU15M3	T2	ATV61HU15N4 (3)	T2	-	
	2_2	ATV61HU30M3	Т3	ATV61HU22M3	T3	ATV61HU22N4 (3)	T2	-	
	3	ATV61HU40M3 (1)	T3	ATV61HU30M3	T3	ATV61HU3ON4 (3)	Т3	ATV61HU30Y	T6
	4	ATV61HU55M3 (1)	T4	ATV61HU40M3	T3	ATV61HU40N4 (3)	Т3	ATV61HU40Y	T6
	5,6	ATV61HU75M3 (1)	T6A	ATV61KU55M3	T4	ATY61HU55N4 (3)	T4	ATV61HU55Y	T6
	7 . 6	-		ATV61HU75M3	T5A	ATV61HU75N4 (3)	T4	ATV61HU75Y	T6
	<u>11 </u>	-		ATV 61H D11M3X (2)	T68	ATV61HD11N4 (3)	T5A	ATV61HD11Y	T6
	16	-		ATV61HD15M3X (2)	T68	ATV61HD(5N4 (3)	T5B	ATV61HD15Y	T6
	18,5			ATV61HD18M3X (2)	T6	ATV61HD18N4 (3)	T58	ATV61HD18Y	T6
	22	-		ATV61HD22M3X (2)	T6	ATV61HD22N4 (3)	T6	ATV61HD22Y	T6
	30	-		ATV61HD30M3X (2)	T7B	ATV61HD3ON4 (3)	T7A	ATV61HD30Y	T6
	37	-		ATV61HD37M3X (2)	T7B	ATV61HD37N4 (3)	T7A	ATV61HD37Y	T8
	46	-		ATV61HD45M3X (2)	T7B	ATV61HD45N4 (3)	T8	ATV61HD45Y	T8
	55	-		ATV 61H D55M3X (2)	T9	ATV61HD55N4 (3)	T8	ATV61HD55Y	T8
	75	-		ATV61HD75M3X (2)	T9	ATV61HD75N4 (3)	T8	ATV61HD75Y	T8
	90	-		ATV61HD90M3X (2)	T10	ATV61HD9ON4 (3)	Т9	ATV61HD90Y	T8_
	110	-		-		ATV61HC11N4	Τ9	ATV61HC11Y	T11
	132			•		ATV61HC13N4	T10	ATV61HC13Y	T11
	160	-		-		ATV61HC16N4	T11	ATV61HC16Y	T11
	200	-		-		ATV61HC22N4	T12	ATV61HC20Y	T11
	220	-		-		ATV61HC22N4	T12	-	
	250	-		-		ATV61HC25N4	T13	ATV61HC25Y	T13
	280	-		-		ATY61HC31N4	T13	-	
	316	-		-		ATV61HC31N4	T13	ATV61HC31Y	T13
	355	-		-		ATV61HC4ON4	T14	-	
	400	-		-		ATV61HC4ON4	T14	ATV61HC40Y	T13
	500	•				ATV61HC5ON4	T14	ATV61HC50Y	T15
	560	•		•		ATV61HC63N4	T15	•	
	630	-				ATV61HC63N4	T15	ATV61HC63Y	T15
C #2 1 1787 4	800	-		-		-		ATV61HC80Y	T15

(1) A utiliser impérativement avec une inductance de ligne.
(2) Varianteur l'ivré sens fittre CEM
(3) Pour commander un variateur en version renforcée pour conditions d'environnement particulières, conforme à l'IEC 60721-33 classe 3c2; ajouter S337 en fin de référence (example : ATV61H075N4S337).
(4) Pulsaances moteurs données pour une tension de 690 V CA (appliquer un déclassement d'un calibre pour une tension maximale de 500 VCA)

(www.schneider-electric.fr)

Dossier technique **BAC PRO ELEEC** Code: 1206-EEE EO Session 2012 Epreuve: E2 Page: 38 / 42 et ressources

Menu de configuration du variateur ATV 61

Code	Nom / Description		Réglage usine
I E H	☐ [Courant therm. mot]	0 à 1,1 ou 1,2 ln (1) selon calibre	Selon calibre variateur
	Courant de protection thermique du moteur, à régler à l'intens	ité nominale lue sur sa p	olaque signalétique.
ЯΓС	☐ [Accélération]	0,1 à 999,9 s	3,0 s
	Temps pour accélérer de 0 à la [Fréq. nom. mot.] (FrS) (page avec l'inertie entraînée.	32). S'assurer que cette	valeur est compatible
4 E C	☐ [Décélération]	0,1 à 999,9 s	3,0 s
	Temps pour décélérer de la [Fréq. nom. mot.] (FrS) (page <u>32</u>) avec l'inertie entraînée.	à 0. S'assurer que cette	e valeur est compatible
L 5 P	□ [Petite vitesse]		0
	Fréquence moteur à consigne mini, réglage de 0 à [Grande vi	itesse] (HSP).	
H S P	☐ [Grande vitesse]		50 Hz
	Fréquence moteur à consigne maxi, réglage de [Petite vitesse usine devient 60 Hz si [Standard fréq mot] (bFr) = [60 Hz NEN		axi] (tFr). Le réglage

⁽¹⁾ In correspond au courant nominal variateur indiqué dans le guide d'installation et sur l'étiquette signalétique du variateur.

PARTIE E

Code	Nom / Description	Plage de réglage	Réglage usine
ЬFr	☐ [Standard fréq mot]		[50 Hz IEC] (50)
5 D 6 D	□ [50 Hz IEC] (50): IEC. □ [60 Hz NEMA] (60): NEMA. Ce paramètre modifie les préréglages des paramètres: [Puis: (UnS), [Courant nom. mot.] (nCr), [Fréq. nom. mot.] (FrS), [Vite ci dessous, [Courant therm. mot] (ItH) page 34, [Grande vites	esse. nom. mot] (nSP) et	
IPL	☐ [Perte phase réseau]		selon calibre variateur
n 0	☐ [Déf. ignoré] (nO) : Défaut ignoré, à utiliser lorsque le v	ariateur est alimenté en	monophasé ou par le
4 E S	bus DC. [Roue libre] (YES): Défaut, avec arrêt roue libre. Si une phase disparaît, le variateur passe en défaut [Perte disparaissent, le variateur continue à fonctionner jusqu'à d		
	Ce paramètre n'est accessible dans ce menu que sur les v en monophasé).	ariateurs ATV61H037M3	3 à HU75M3 (utilisables
n P r	☐ [Puissance nom. mot]	selon calibre variateur	selon calibre variateur
	Puissance nominale moteur inscrite sur sa plaque signalétiqu IEC] (50), en HP si [Standard Mot.Fréq] (bFr) = [60 Hz NEMA		ot.Fréq] (bFr) = [50 Hz
U n 5	□ [Tension nom. mot.]	selon calibre variateur	selon calibre variateur et [Standard Mot.Fréq] (bFr)
	Tension nominale moteur inscrite sur sa plaque signalétique. ATV61eeeM3 : 100 à 240 V ATV61eeeN4 : 200 à 480 V		
nΣr	☐ [Courant nom. mot.]	0,25 à 1,1 ou 1,2 ln selon calibre (1)	selon calibre variateur et [Standard Mot.Fréq] (bFr)
	Courant nominal moteur inscrit sur sa plaque signalétique.		
F r 5	□ [Fréq. nom. mot.]	10 à 500 ou 1000 Hz selon calibre	50 Hz
	Fréquence nominale moteur inscrite sur sa plaque signalétiqu Le réglage usine est 50 Hz, remplacé par un préréglage de 60		գ] (bFr) est mis à 60 Hz.
n 5 P	☐ [Vitesse nom. mot]	0 à 60000 RPM	selon calibre variateur
	Vitesse nominale moteur inscrite sur sa plaque signalétique. 0 à 9999 RPM puis 10.00 à 60.00 kRPM sur l'afficheur intégré Si la plaque signalétique n'indique pas la vitesse nominale ma en Hz ou en %, calculer la vitesse nominale comme suit :	is la vitesse de synchror	nisme et le glissement
	vitesse nominale = vitesse de synchronisme x 100 - glisser 100 vitesse nominale = vitesse de synchronisme x 50 - glisser 50 vitesse nominale = vitesse de synchronisme x 60 - glisser	ent en Hz (moteurs 50	
	60		
Ł F r	☐ [Fréquence maxi.]	10 à 500 ou 1000 Hz selon calibre	60 Hz
	Le réglage usine est 60 Hz, remplacée par un préréglage à 72 La valeur maxi est limitée par les conditions suivantes : • elle ne peut dépasser 10 fois la valeur de [Fréq. nom. mot.] • les valeurs de 500 Hz à 1000 Hz ne sont possibles qu'en co à 37 kW pour ATV61H eee et 45 kW pour ATV61Weee. Dar avant [Fréquence maxi.] (tFr).	(FrS) mmande U / F et pour d	es puissances limitées

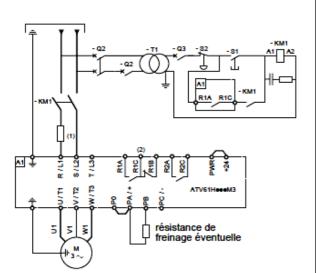
(1) In correspond au courant nominal variateur indiqué dans le guide d'installation et sur l'étiquette signalétique du variateur.

BAC PRO ELEEC	Code: 1206-EEE EO	Dossier technique et ressources	Session 2012	Epreuve : E2	Page : 39 / 42
---------------	-------------------	---------------------------------	--------------	--------------	----------------

Menu de configuration du variateur ATV 61

Code	Nom / Description	Réglage usine
FUn	☐ [Auto-régiage]	(Cn) [noN]
90 c E	 □ [Non] (nC): Auto-réglage non fait. □ [Out] (YES): L'auto-réglage est fait dès que possible, puis le paran automatiquement à [Fait] (dOnE). □ [Fait] (dOnE): Utilisation des valeurs données par le précédent a Attention: • Hest impératif que tous les paramètres moleurs ([Fension nom. nom. mot.] (FrS), [Courant nom. mot.] (nCr), [Vitesse nom. mot.] nom. mot.] (nFr)) solent correctement configurés avant d'effectu. Si au moins un de ces paramètres est modifié après que l'auto-effectué, [Auto-réglage] (t01) repasse à [Non] (nO) et doit être. • L'auto-réglage s'effectue seulement si auxune commande d'arm si une fonction "arrêt roue libre" ou "arrêt rapide" est affectée à u il faut mettre cette entrée à 1 (active à 0). • L'auto-réglage est prioritaire sur les ordres de marche ou de préqui serront pris en compte après la séquence d'auto-réglage. • Si l'auto-réglage échoue le variateur affiche [Non] (nO) et, suiva de [Gestion défaut tnf] (tnL) (consulter le cédèrom foumi avec il passer en défaut [autoréglage] (tnF). • L'auto-réglage peut durer 1 à 2 secondes. Ne pas l'interrompre l'affichage passe à "[Fait] (dOnE)" ou à "[Non] (nO)". • Nota : Pendant l'auto-réglage le moteur est parsouru pa nominal. 	uto-régiage. mot.] (UnS), [Fréq. (nSP), [Puissance per l'auto-régiagerégiage a été refait. st n'est actionnée. me entrée logique, iffuxage éventuels int la configuration e variateur), peut est attendre que
£ U ⊆	☐ [Etat auto-réglage]	[Nonfait] (tAb)
40 c 6 c 6 c 6 c 6 c 6 c 6 c 6 c 6 c 6 c	(Information, non paramétrable) ☐ [Non faht] (tAb): La valeur par défaut de résistance du stator est remmander le moteur. ☐ [En attente] (PEnd): L'auto-réglage a été demandé mais n'est pa ☐ [En cours] (PrOG): auto-réglage en cours. ☐ [Echec] (FAIL): L'auto-réglage a échcué. ☐ [Fait] (dOnE): La résistance stator mesurée par la fonction auto-regour commander le moteur.	as encore effectué.
PHr	[Rotation phase]	[ABC] (AbC)
ЯЬС ЯСЬ	 [ABC] (AbC): Sens normal, [ACB] (ACb): Sens inverse. Ce paramètre permet d'inverser le sens de rotation du moteur sar câblage. 	s inverser le

Code	Nom / Description	Plage de réglage	Reglage usine				
FCC	Cde 2 fils / 3fils]		[Cde 2 fils] (2C)				
3 C 5 C	☐ [Cde 2 fils] (2C) ☐ [Cde 3 fils] (3C)	Evanuela	de câblage en "source" :				
	Commande 2 fils : C'est l'état (0 ou 1) ou le front (0 à 1 ou 1 à 0) de l'entrée qui commande la marche ou l'arrêt.	ATV 61 104 LI1 Lix Lix : ami	nt -				
	Commande 3 fils (Commande par impulsions) : une impulsion "avant" ou amière" suffit pour commander le démarrage, une impulsion "stop" suffit pour commander l'arrêt.	Exemple 124 to 1 to 2 to 2 to 3 to 3 to 3 to 3 to 3 to 3	nt				
	▲ AV	/ERTISSEMENT					
	FONCTIONNEMENT INATTENDU DE L'APPAREIL Le changement d'affectation de [Cde 2 fils/3fils] (tCC) nécessite un appui prolongé (2 s) de la touche "ENT". Il entraîne un retour au réglage usine de la fonction : [Type cde 2 fils] (tCt), consulter le cédérom fourni avec le variateur, et de toutes les fonctions affectant des entrées logiques. Il entraîne également un retour à la macro configuration sélectionnée si celle ci a été personnalisée (perte des personnalisations). Assurez vous que ce changement est compatible avec le schéma de câblage utilisé. Si cette précaution n'est pas respectée, cela peut extraîner la mort ou des blessures graves.						
	—						
CFG	[Macro configuration]		[Pomp. vent.] (PnF)				
6 E C P I d C E C P C F	☐ [Start/stop] (StS): Marche / an ☐ [Usage gén.] (GEn): Usage gé ☐ [PID régul.] (PId): Régulation ☐ [Network C.] (nEt): Bus de cor ☐ [Pomp. vent.] (PnF): Pompage	inéral PID mmunication					
	A AV	/ERTISSEMENT					
	FONCTIONNEMENT INATTENDU DE Le chargement de la [Macro configuration touche ENT. Assurez vous que la macro configuration câblage utilisé. Si oette précaution n'est pas respecté graves.	lon] (CFG) nécessite un app on choisie est compatible av	ec le schéma de				
CCFG	[Macro perso.]						
4 E S	Paramètre en lecture seulemen configuration a été modifié. [Oui] (YES)	it, visible si au moins un par	amètre de la macro				


PARTIE E

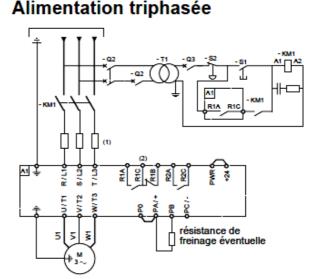
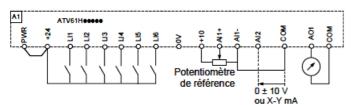

BAC PRO ELEEC Code: 1206-EEE EO Dossier technique et ressources Session 2012 Epreuve: E2 Page: 40 / 42

Schéma de raccordement variateur de vitesse

Alimentation monophasée (ATV61H 075M3 à U75M3)


Inhiber le défaut indiquant la perte d'une phase réseau pour permettre le fonctionnement sur un réseau monophasé. Si ce défaut roste donc se conferent sur un réseau monophasé. Si ce défaut reste dans sa configuration usine, le variateur restera verrouillé en défaut.

Schémas de raccordement contrôle

Schéma de raccordement de la carte contrôle

Autres types de schémas (alimentation 24 V externe, logique négative, etc...) consulter le cédérom fourni avec le variateur.

Mise en service - Recommandations préliminaires- Configuration usine :

Nous avons préréglé l'Altivar 61 en usine pour les conditions d'emploi les plus courantes :

- Macro configuration: Pompage / Ventilation.
- Fréquence moteur : 50 Hz.
- Application à couple variable avec économie d'énergie.
- Mode d'arrêt normal sur rampe de décélération.
- Mode d'arrêt sur défaut : roue libre.
- Rampe linéaires, accélération et décélération : 3 secondes.
- Petite vitesse: 0 Hz.
- Grande vitesse: 50 Hz.
- Courant thermique moteur = courant nominal variateur.
- Courant de freinage par injection à l'arrêt = 0,7 x courant nominal variateur, pendant 0,5 s.
- Fréquence de découpage 2,5 kHz à 12 kHz selon le calibre du variateur.
- Entrées logiques : (LI5, LI6 : inactives (non affectées))
 - LI1: marche avant
 - Ll2: marche arrière
 - LI3, LI4 : 4 vitesses présélectionnées (vitesse 1 = LSP, vitesse 2 = 10Hz, vitesse 3 = 25 Hz, vitesse 4 = 50 Hz)
- Entrées analogiques :
 - Al1: 1 consigne vitesse 0 +10 V.
 - Al2: 2ème consigne vitesse 0-20 mA.
- Relais R1: le contact s'ouvre en cas de défaut (ou variateur hors tension).
- Relais R2 : le contact se ferme lorsque le variateur est en marche.
- Sortie analogique A01 : 0-20 mA, fréquence moteur.

PARTIE E

BAC PRO EL EEC	Code: 1206-EEE EO	Dossier technique	Session 2012	Epreuve : E2	Page · 41 / 42
	0000: 1200 222 20	et ressources	00001011 2012	_p.ou.o	ago : 117 12

Références

TSX SCY 21601

TSX SCY 11601

Plate-forme d'automatisme Modicon Premium Liaison série Modbus

Eléments de co	onnexion à la	liaison série M	odbus			
Radios	TSX SCP 11.	Désignation	Protocole	Couche physique	Référence	Masse kg
		Liaison intégrée automate TSX Micro (prise TER)		RS 485 non isolée ;	Consulter notre site www.schneider-electric.r	<u> </u>
		Module de communication pour Premium et Atrium	Modbus Mode caractères Uni-Telway	 1 voie intégrée RS 485 isolée (voie 0), (197 esclaves) 1 emplacement carte PCMCIA (voie 1) (1) 	TSX SCY 21601	0,360
TSX Micro			Modbus	1 voie intégrée RS 485 isolée (voie 0), 1,218,2 Kbit/s (1247 esclaves)	TSX SCY 11601	0,340
Sales Sales	10	Cartes PCMCIA pour processeur		RS 485 (compatible RS 422) 1,219,2 Kbit/s	TSX SCP 114	0,105
(4)		Premlum, Uni stot-PLC Atrium, automate TSX 37 21/22 ou module TSX 9CY 21801		RS 232(9 signaux) 0,619,2 Kbit/s	TSX SCP111	0,105
				BC 20 mA 1,219,2 Kbit/s	TSX SCP 112	0,105

Interface physique		Prise terminal TSX Micro RS 485 non isolée		Carte PCMCIA		Prise intégrée TSX SCY pour Premium RS 485 isolée			
		TSX 37 05/08	TSX 37 10/21/22	RS 485 isolée (1)	BC 20 mA	RS 232 non isolée	TSX SCY 11601	TSX SCY 21601	
Structure	Nature	Bus industriel h	Bus industriel hétérogène						
	Méthode d'accès	Esclave Maître/ Maître/esclave esclave							
Transmission	Mode	Asynchrone en	Asynchrone en bande de base						
	Trame	RTU		RTU/ASCII					
	Débit binaire	1,214,2 Kbit/s		0,619,2 Kbit/s pour TSX SCP 111 1,219,2 Kbit/s pour TSX SCP 112/114			1,219,2 Kbit/s		
	Medium	Double paire torsadée blindée			Double paire torsadée blindée doublée	Quintuple paire torsadée blindée	Double paire torsadée blind		
Configuration	Nombre d'équipements	28 maxl en RS 485 Point à point en RS 422			16 maxi	2 (point à point)	32		
	Nb maxi d'adresses liaison	98	248	98			248 98		
	Longueur du bus	10 m maxi ilaison mon isolée 1300 m maxi en ilaison isolée (2)		1300 m hors dédvation	100 à 1000 m selon débit	15 m maxi	1380 m hors dérivation		
	Dérivation	-		15 m maxl	-	-	15 m		
Services	Requêtes	Bits : 1920 bits par requête Mots : 120 mots par requête							
	Sécurité	Un paramètre de contrôle CRC 16 sur chaque trame							
	Surveillance	Pas de contrôle	e de flux	Compteurs de diagnostic, compteurs d'événements					

PARTIE E

BAC PRO ELEEC	Code: 1206-EEE EO	Dossier technique	Session 2012	Epreuve : E2	Page: 42 / 42
---------------	-------------------	-------------------	--------------	--------------	---------------