Votre nom :			SYSTÈME	Le pavillon
Date :		PAGE 1/	7 SOUS / SYSTÈME	
NOM DE FICHIER		ROTECTION PA <u>EUR ELÈVE.VS</u>	COURS-DOCUMENT	Protection par Disjoncteur
DATE DE MODIFICA	ATION	14/11/200	6	riorection par Disjonicieur

Objectif

Décoder la documentation technique normative et réglementaire (NF - C 15-100) pour réaliser la répartition des circuits dans un logement.

Interpréter les informations relatives à la réalisation d'une installation électrique.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		• 1	, .		• • • •
Un disionstair	oct iin	annareil	mecanialie	an	connexion capable
on disjonic redi	esi un	appai eii	mecunique	ue	connexion capable

-	•	•	•	•	•	•	•		•	•	•	•	•		 •	•	•	•	•	•	•		 •	•	•	•			•	•	•	•		•	•	•	•		 	•	•	•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•			•	
-		•	•	•	•											•	•	•	•					•	•		•		•	•				•	•				 	•	•	•							•	•	•							•				•	
-			•		•	•											•			•			•	•						•			•	•	•				 		•	•							•	•	•							•			•		

Il peut aussi, pendant une durée spécifiée :

Savoir	technol	logique	visé	:
53.	.1 : Tnst	allation	ns éle	~

53-1 : Installations électriques des bâtiments.

- Appareillage de protection
- Respect de la normalisation

53-4 Protection des installations

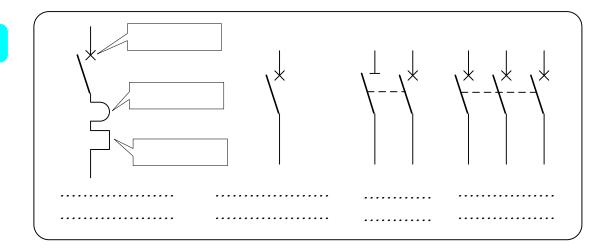
- Règles générales
- Principe de la protection

Compétence visée :

C3-1 : choisir les matériels d'une installation simple.

C3.2 : Argumenter un devis

1	_	_		• •		•	
7	•	-	ıst		-	-	
		-67				m	

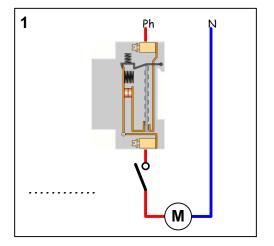

Un disjoncteur magnéto-thermique est constitué:

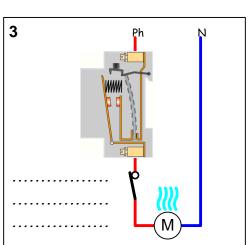
-	d'un	systèr	ne de	protection	contre
	les				

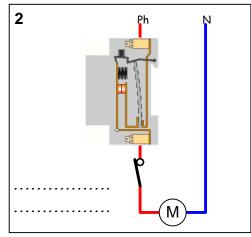
- d'un système de protection contre les
- de contacts avec un grand

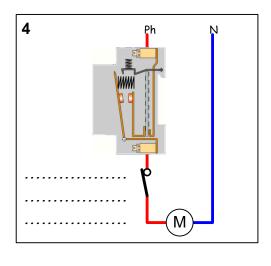
.....

2. Symboles


Votre nom :			SYSTÈME Le pavillon
Date :	PAGE	2/7	SOUS/SYSTÈME
NOM DE FICHIER	ROTECTION EUR ELÈVE		COURS-DOCUMENTS Protection pan Disjonsteur
DATE DE MODIFICA	14/11		FIGURATION DUI DISTONCTEUR


3. Protection contre les surcharges - Partie thermique

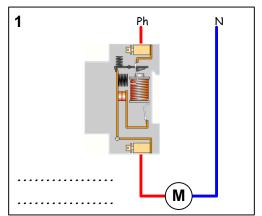

Un circuit est en surcharge lorsque l'intensité	é du courant est
Une surcharge provoque un	qui, à terme, peut faire fondre les
isolants. Le bilame	
Un bilame est formé de	
Ces deux lames sont intimement liées	
par soudure à froid.	
Sous effet de la chaleur,	

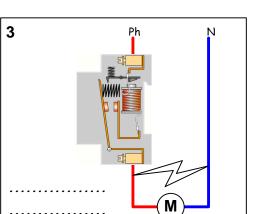

FONCTIONNEMENT:

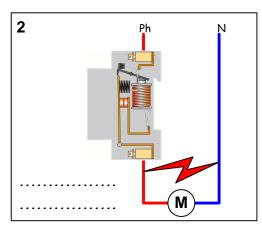
- A froid, le bilame est droit.
- En fonctionnement normal, l'intensité du courant qui traverse le bilame fait qu'il se déforme.
- En cas de surcharge, la déformation plus importante du bilame déclenche le disjoncteur.
- A partir du moment où le circuit est ouvert, le bilame va se refroidir et reprendre sa position d'origine.

Votre nom :		SYSTÉME Le pavillon
Date :	PAGE 3/7	SOUS / SYSTÈME
LNOW DE FICHIER	ROTECTION PAR EUR ELÈVE.VSD	COURS-DOCUMENTS Protection pan Disjonsteur
DATE DE MODIFICATION	14/11/2006	Protection par Disjoncteur

4. Protection contre les court-circuits - Partie magnétique


Un court-circuit se produit lorsque deux conducteurs de polarité différentes se touchent.

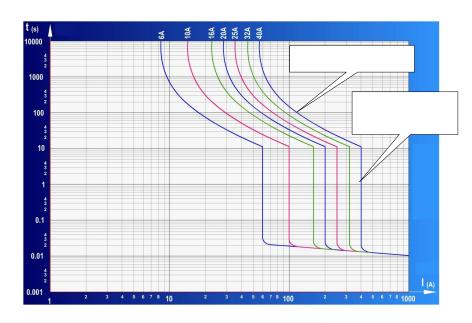

- A ce moment-là, aucun récepteur n'est dans le circuit, l'intensité du courant atteint rapidement plusieurs milliers d'ampères.
- Il y a échauffement très important, apparition d'arc électrique (risque d'incendie et d'explosion) et des effets électrodynamiques puissants.


La bobine électromagnétique Sous l'effet d'un fort courant (situation de court-circuit), la bobine électromagnétique va instantanément (10 à 20 ms) attirer la partie mobile du circuit magnétique et provoquer le déclenchement du disjoncteur.

FONCTIONNEMENT:

- Fonctionnement normal (le courant est inférieur ou égal à In).
- En cas de court-circuit, la bobine attire la partie mobile du circuit magnétique.
- le mécanisme déclenche le disjoncteur.
- Une fois le défaut éliminé, le disjoncteur peut être réenclenché.

Votre nom :			SY	Le pavillon
Date :		PAGE 4	/ 7	SOUS / SYSTÈME
NOM DE FICHIER		ROTECTION P EUR ELÈVE.V		Dnotection pan Disjonsteur
DATE DE MODIFICA	ATION	14/11/20	006	Protection par Disjoncteur


5. Les contacts

électrique. Cet arc électrique résulte de
a température de l'arc (5000 °C) a pour effet d

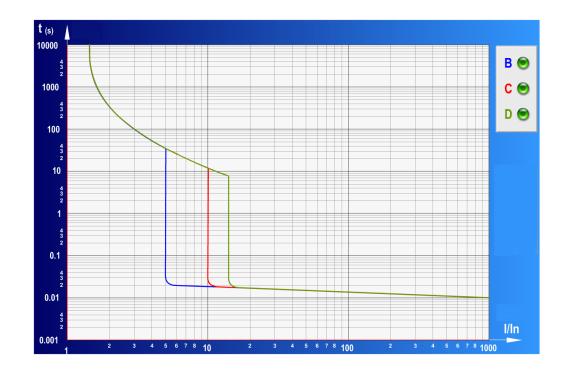
La forme du contact favorise l'effet de boucle (loi ce Laplace). L'arc électrique s'allonge et s'accroche aux parties métalliques de la chambre de coupure. Ainsi,

6. Courbe de déclenchement

C'est l'association de la courbe de déclenchement de la partie thermique et de la courbe de déclenchement de la partie magnétique.

Exercice :

Donner les temps fusions suivant :


	Temps de déclenchement pour I = 20 A	Temps de déclenchement pour I = 100 A	Temps de déclenchement pour I = 1000 A
Calibre 10 A			
Calibre 32 A			

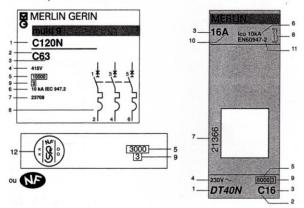
Votre nom :		SYSTÉME Le pavillon
Date :	PAGE 5/7	SOUS / SYSTÈME
	ROTECTION PAR EUR ELÈVE.VSD	Protection par Disjoncteur
DATE DE MODIFICATION	14/11/2006	Protection pair disjoncteur

7. Type de courbes et applications

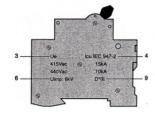
Selon l'installation les normes demandent d'adapter le disjoncteur aux contraintes de l'exploitation afin d'éviter des déclenchements intempestifs.

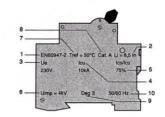
Туре		Déclenchement de la partie magnétique	Protection	Exemples d'applications	
Courbe B	ر	3 à 5 In	Des circuits avec une longueur de câble importante		
Courbe C	ک	5 à 10 In	Des circuits	Application générale	
Courbe D	كر	10 à 14 In	Des circuits des installations soumises à des courants d'appel importants.	Moteurs transformateurs	
Courbe K	\	10 à 14 In	Des circuits des installations soumises à des courants d'appel importants.	Moteurs transformateurs Circuits auxiliaires	
Courbe Z	7	2,4 à 3.6 In	Des circuits électroniques	Diodes Thyristors	
Courbe MA		10 à 14 In	Des moteurs (pas de protection thermique)	Démarreurs moteurs	

Votre nom :		SYSTÉME Le pavillon
Date :	PAGE 6/7	SOUS / SYSTÈME
	ROTECTION PAR EUR ELÈVE.VSD	COURS-DOCUMENTS Protection pan Dicionstaur
DATE DE MODIFICATION	14/11/2006	Protection par Disjoncteur


8. Caractéristiques d'un disjoncteur

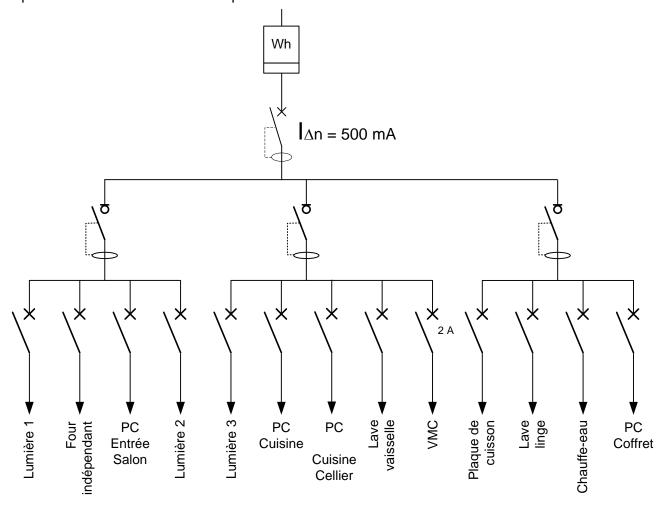
- 1) Courant nominal (In) ou calibre : C'est le courant que peut supporter en service normal permanent les contacts du disjoncteur. Ils sont normalisés: 10A, 16A, 20A, 25A, 32A, 40A ou 63 A.
- 2) Tension nominale : C'est la tension pour laquelle le disjoncteur est destiné (de 230 à 690V pour la basse tension).
- 3) Nombre de pôles : 1 à 4 suivant les applications.
- 4) Pouvoir de coupure : C'est la valeur du courant de courtcircuit que peut couper le disjoncteur sans détérioration sous la tension nominale. Il s'exprime en kA.
- 5) Type de déclencheur utilisés : Magnéto-thermique, thermique, magnétique, temporisé ou non, différentielle ou électronique.
- 6) Courbe de déclenchement : En fonction des conditions d'installation (courbe B, C, D, K, Z ou MA).


Marquage de la face avant


- 1 Variante du disjoncteur suivant le pouvoir de coupure
- 2 Courbe de déclenchement
- 3 Calibre du disjoncteur (courant assigné)
- 4 Tension d'emploi (Ue)
- 5 Pouvoir de coupure suivant la norme "domestique et analogue" NF EN 60 898 (C 61-410)
- 6 Pouvoir de coupure suivant la norme "industrielle" NF EN 60947-2 (C 63-120)
- 7 Référence commerciale
- 8 Symbole électrique suivant le nombre de pôles
- 9 Classe de limitation
- 10 A = Ampère ; doit être précisé suivant la norme CEI 947-2 pour applications industrielles
- 11 Symbole d'aptitude au sectionnement à coupure pleinement apparente
- 12 Marque de conformité NF.

Marquage latéral

- 1 Norme de construction (applications industrielles)
- 2 Réglage magnétique (courbe C)
- 3 Tension d'emploi (Ue)
- 4 Pouvoir de coupure ultime (Icu)
- 5 Performance de coupure en service (lcs) (en %)
- 6 Tension de tenue au choc
- 7 Température de référence
- 8 Catégorie de l'appareil (A : appareil non prévu pour réaliser de la sélectivité chronométrique)
- 9 Degré de pollution
- 10 Fréquence d'utilisation.



Document Merlin-Gérin

Votre nom :		Le pavillon
Date :	PAGE 7/	SOUS / SYSTÈME
	ROTECTION PAI EUR ELÈVE.VSI	COURS-DOCUMENTS Protection par Dictoretour
DATE DE MODIFICATION	14/11/200	Trotection but Distoncteur

9. Exercice d'application

1) Complétez le schéma du coffret de répartition suivant :

2) Complétez la commande de matériel suivant :

Désignation	Réf	Fab	Q	P.U.	P.T.
Interrupteur différentiel bipolaire ID'clic 30 mA Type AC Cal:				1	_
nterrupteur différentiel bipolaire ID'clic 30 mA Type A Cal:					L
				1	
				1	
				1	
				1	
				1	1
			Total H.T. TVA 19,6 %		1
	TOTAL T.T.C.				