Exploitation de bases de données scientifiques en ligne : utilisation des données des forages océaniques profonds (DSDP, ODP, IODP)

Les premières campagnes de forages océaniques profonds (1968) avaient pour objectif de valider le modèle d'expansion des fonds océaniques basé (entre autres) sur les interprétations des anomalies magnétiques, des failles transformantes, des points chauds et la cinématique des plaques. Il s'agissait de corréler l'âge de la croûte et la distance à l'axe de sa dorsale ainsi que de calibrer l'échelle magnétostratigraphique.

Dans les trois exemples proposés ici, il s'agit d'utiliser ces données pour mettre en évidence des variations d'un certain nombre de paramètres en fonction de la distance à l'axe de la dorsale, permettant de valider le modèle de l'expansion des fonds océaniques.

Origine des activités :

Les exemples 1 et 2 correspondent à des adaptations d'activités proposées sur l'ancien site JOI Learning. Ce site était une dépendance du Joint Oceanographic Institutions, aujourd'hui devenu le Consortium for <u>Ocean Leadership</u> qui regroupe les différents organismes et institutions participant au projet <u>IODP</u> (voir aussi : <u>http://www.iodp-france.org/</u>). Le programme IODP (Integrated Ocean Drilling Program) est un programme scientifique international d'exploration et d'étude des fonds sous-marins. IODP a succédé en 2004 au projet ODP (Ocean Drilling Program), lui même successeur en 1985 du programme DSDP (Deep Sea Drilling Program) initié en 1968.

Les liens n'étant plus actifs , les fichiers correspondants sont disponibles ici :

- exemple 1 :

seafloor_spreading.kmz : fichier Google Earth de localisation des forages ; Seafloor_Spreading.pdf : livret de l'élève (fichier documents + activités) ; Seafloor_Spreading_Guide.pdf : livret du professeur.

 exemple 2 : seafloor_bathymetry.kmz : fichier Google Earth de localisation des forages ; Seafloor_Bathymetry_Google.pdf : livret de l'élève (fichier documents + activités).

- Les propositions d'activité disponibles sur le nouveau site sont visibles à partir de ce lien :

http://www.oceanleadership.org/education/deep-earth-academy/educators/classroomactivities/

Exemple 1 :

Pour cette activité, il s'agit d'utiliser les données afin de mettre en évidence une augmentation de l'age des premiers sédiments déposés en fonction de la distance à l'axe de la dorsale. Il est possible de calculer pour chaque site une vitesse d'expansion.

Cette activité est la moins complexe. Les données sont directement affichées dans Google Earth lorsque l'on interroge les sites géoréférencés (on "clique" sur le site).

On lance Google Earth puis on ouvre le fichier Atlantique sud.kmz

OU

"double-clic" sur le fichier Atlantique sud.kmz pour le lancer directement dans Google Earth

Cliquer sur le forage dont on veut afficher les caractéristiques

On récupère les données pour chaque site que l'on reporte dans un tableur afin de calculer les vitesses d'expansion

Site 14

2

Sample taken 745 km West of the ridge. Paleontological Age of Sediment= 40 m.y.

Site	Site rapport à la ride		Age (Ma)	vitesse (cm/an)
16	est	220	11	2,0
15	est	442	24	1,8
14	est	745	40	1,9
19	est	1010	49	2,1
20	est	1303	67	1,9
21	est	1686	76	2,2
16	ouest	506	26	1,9
17	ouest	718	33	2,2

nosition nar

Exemple 2 :

Pour chaque forage, trois paramètres sont à obtenir :

- âge des sédiments les plus anciens ;
- épaisseur de la couche sédimentaire ;
- profondeur du plancher basaltique.

L'épaisseur des sédiments est directement fournie par l'affichage des informations du forage choisi sous google Earth. La bathymétrie est calculée à partir des données temporelles du sonar. Ces deux paramètres permettent de calculer la profondeur du plancher basaltique.

La récupération des âges des sédiments nécessite de se connecter au site de l'IODP, via le lien affiché sous Google Earth, afin d'interroger la base de données des forages (Ocean Drilling Data). Les âges disponibles ne correspondent pas toujours aux sédiments les plus profonds : les élèves devront faire attention lors de l'analyse des données.

Les résultats peuvent être consignés sous forme d'un tableau de synthèse et d'un graphique qui permettent de mettre en œuvre un certains nombre de compétences liées à la maitrise d'un tableur-grapheur.

	ODP 168-1029	/	Σ	N° de l'e données numéro	expédition : tous les documents et les sont référencés par rapport à ce				
	Metadata								
	Expedition:	168		N° du site					
	Site:	1029							
	Hole:	Α		N° du forage					
	Latitude:	47.8317]						
and the second	Longitude:	-128.376		Distance è la ride					
	Date:	08/07/96 2055							
	Distance East of Ridge:	56km		Temps du il s'agit d	u trajet des ondes du sonar (attention, u trajet aller-retour, la profondeur est				
168-1028	Travel Time of Sonar:	3.65s	ſ	donc de moitié)					
	Sediment Thickness: 259m >]						
	Core Recovered:	202.97 m		Epaisseur totale des sédiments					
	Data								
	Core Data			- Longueur totale de carotte récupérée					
	Publicatio			ne detell					
	Scientific Prospectus	Un clic s	ar le llen co	re data					
	Preliminary Report		ctionnée) pe	rmet					
	Initial Report volume	d'accéd	er, via le nav	vigateur					
	Scientific Report Volume	Scientific Report Volume interr							
		disp	onibles en ligne						
gee o ty	Itinéraire : Vers ce lie lieu		egrated C)cean D Ementing o	Overview 1 Search 1 Core data 1 Home RGANIZATION				

Ocean Drilling Data - Leg 168, Site 1029 Data Overview

Moratorium Login Janus Paleo Dictionaries

ANALYSIS	Hole Total	A
Site/Hole Summary (meters recovered)	203	203
Hole/Core Summary (cores)	25	25
Core/Section Summary (sections)	165	165
Corelog (samples)	834	834
GRA Bulk Density (sections)	141	141
Magnetic Susceptibility (sections)	141	141
Natural Gamma Radiation (sections)	141	141
P-Wave Vel (Whole Core) (sections)	76	76
P-Wave Vel (Split Core) (samples)	217	217
Moisture Density (samples)	155	155
Thermcon (samples)	140	140
Shear Strength (samples)	48	48
Color Reflectance (sections)	149	149
Point Susceptibility - MS2F (sections)	0	0
Downhole Temp Adara (samples)	9	9
Splicer (tie points)	0	0
Tensor (cores)	0	0
Cryomag (sections)	100	100
Paleo Investigation (samples)	88	88
Range Table (taxa)	305	305
Age Profile (datum list)	1	8
Depth-Age Model	9	9
X-Ray Diffraction (samples)	14	64
XRD Images (samples)	0	-0
X-Ray Fluorescence (samples)	0	0
ICP (samples)	0	0

Un clic sur le nombre d'âges disponibles permet d'accéder au fichier des âges du forage ("depth-age model" : modèle âge - profondeur)

Distance à la ride (km)

Exemple 3 :

Il s'agit de la version "ouverte" de l'activité. Chaque élève peut choisir ses sites à partir de l'ensemble des campagnes de forages (DSDP, ODP, IODP).

Fondamentalement, la procédure d'interrogation des sites de forages est la même que dans l'exemple 2. La bathymétrie est directement indiquée (pas de calculs avec le temps-trajet du sonar) mais la distance à la ride doit être mesurée avec l'outil de Google Earth.

programmes (Cf. exemple 2) il faut cliquer sur "depth-age model"

N° de l'expédition : tous les documents et les données sont référencés par rapport à ce

Programme : DSDP / ODP / IODP

Profondeur du plancher (bathymétrie)

Longueur totale de carotte récupérée

Accès aux données de la carotte sélectionnée (ainsi que du forage s'il y a plusieurs carottes)

Description visuelle des carottes (visual core

Prospectus scientifique (projet de campagne)

Rapport préliminaire

Rapport scientifique

Core Data from the Deep Sea Drilling Project

Leg 3, hole 15

Physiographic feature:	hill
Total penetration (m):	142
# sediment cores:	11
Oldest sediment core:	9
Oldest sediment age:	Lower Miocene
Oldest sediment descriptio	n:marly chalk ooze
Type of crust:	oceanic
Depth to basement (m):	141
# Rock cores:	2
Rock description:	aphanitic basalt

Data types available:										
age profile	original	delimited)							
carbon/carbonate	original	delimited								
core depth recovery	original	delimited								
density-porosity	original	delimited								
discrete sediment paleomagnetics	original	delimited	browse							
grain size	original	delimited								
gamma ray attenuation porosity evaluator	original	delimited								

1003037-3	A SHARE THE	the second second	A CONTRACTOR OF THE OWNER	and the second second second	Constant and					10	11 25	Carline California Con		
leg	site	hole	age mnemonic	auxiliary age	mnemonic	top of section depth(m)	bottom of section dept	th(m)	special	condit:	ion age	auxiliary a	ge averaged age	age top of
3	15		PLEISTOCENE	0.0	9.0	NO AGE GIVEN	NO AGE GIVEN	0.011	1.8	.9055	DSDP INITIAL	REPORTS		· ·
3	15		UPPER PLIOCENE	18.0	27.0	NO AGE GIVEN	NO AGE GIVEN	1.8	3.4	2.6	DSDP INITIAL	REPORTS		
3	15		LOWER PLICCENE	37.0	54.0	NO AGE GIVEN	NO AGE GIVEN	3.4	5	4.2	DSDP INITIAL	REPORTS		
3	15		UPPER MIOCENE	54.0	86.0	NO AGE GIVEN	NO AGE GIVEN	5	10.5	7.75	DSDP INITIAL	REPORTS		
3	15		MIDDLE MIOCENE	105.0	113.5	NO AGE GIVEN	NO AGE GIVEN	10.5	16	13.25	DSDP INITIAL	REPORTS		
3	15		LOWER MIOCENE	113.5	141.0	NO AGE GIVEN	NO AGE GIVEN	16	22.5	19.25	DSDP INITIAL	REPORTS		
							·							

On récupère les données que l'on importe dans un tableur afin de lire les âges et les profondeurs

leç	g site	hole	age mnemonic	auxilian age mnemonic	top of section depth(m)	bottom of section depth(m)	special condition	age	auxiliary age	averaged age	age top of section (million years)	age bottom of section (million years)	average age (million years)	data source
3	16		PLEISTOCENE		0	24		NO AGE GIVEN		NO AGE GIVEN	0,011	1,8	0,9055	DSDP INITIAL REPORTS
3	16		UPPER PLIOCENE		24	46		NO AGE GIVEN		NO AGE GIVEN	1,8	3,4	2,6	DSDP INITIAL REPORTS
3	16		LOWER PLIOCENE		55	64		NO AGE GIVEN		NO AGE GIVEN	3,4	5	4,2	DSDP INITIAL REPORTS
3	16		UPPER MIOCENE		85,7	162		NO AGE GIVEN		NO AGE GIVEN	5	10,5	7,75	DSDP INITIAL REPORTS

On récupère l'âge le plus ancien correspondant à l'échantillon datable le plus profond que l'on reporte dans un tableur - grapheur (Cf. exemple 2)

Pour obtenir la distance forage - ride océanique, on utilise l'outil règle de Google Earth

- Cliquer sur l'icone de l'outil règle
- tracer à la souris (bouton gauche enfoncé) le segment correspondant à la distance
- lire la distance dans la fenêtre (changer éventuellement les unités)

Les fichiers correspondant aux activités :

- Fiches illustratives :

IPOD.pdf : le fichier complet (les 3 exemples) exemple-1.pdf : fichier illustratif de l'activité n°1 seule exemple-2.pdf : fichier illustratif de l'activité n°2 seule exemple-3.pdf : fichier illustratif de l'activité n°3 seule

- Fiche terminologique :

Forage océanique.pdf : fiche terminologique sur les carottages océaniques

- Fichiers de géolocalisation pour Google Earth :

Atlantique sud.kmz : fichier Google Earth de localisation des forages de l'exemple 1 Juan de Fuca.kmz : fichier Google Earth de localisation des forages de l'exemple 2 Forages.kmz : fichier Google Earth de localisation des forages de l'exemple 3