# pH d'une solution aqueuse

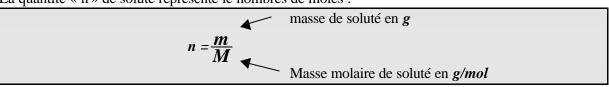
# I - Activité 1:

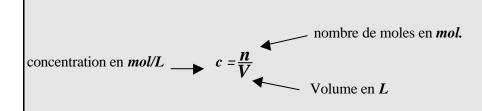
 $\Rightarrow$  A l'aide du cours « Solutions acides, basiques, ou neutre », notez la couleur obtenue avec le B.B.T. .

⇒ Prélevez à l'aide d'une pipette quelques gouttes de solution et déposez-les sur le papier pH. Notez les résultats obtenus.

⇒ Indiquez la valeur lue sur le pH mètre.

| Solutions           | couleur<br>(B.B.T.) | Mesure pH<br>Papier pH | Mesure pH<br>pH mètre |
|---------------------|---------------------|------------------------|-----------------------|
| Vinaigre            |                     |                        |                       |
| Acide Chlorhydrique |                     |                        |                       |
| Eau distillée       |                     |                        |                       |
| Eau de Javel        |                     |                        |                       |
| Soude               |                     |                        |                       |
| Citron              |                     |                        |                       |


| RETE          | ENONS :                    |           |  |
|---------------|----------------------------|-----------|--|
| •••••         | •••••                      |           |  |
|               |                            |           |  |
|               |                            |           |  |
|               |                            |           |  |
|               |                            |           |  |
|               |                            |           |  |
| <b>Echell</b> | le du pH : ( potentiel d'h | ydrogène) |  |
| 0             |                            | 7         |  |
|               |                            |           |  |


# II - Interprétation :

### $1^{\circ}$ - Rappels :

La concentration « c » d'un soluté dans une solution est la quantité « n » de soluté dissoute dans un litre de solvant.

La quantité « n » de soluté représente le nombres de moles :





Exercice: Le chlorure de sodium est totalement dissocié dans l'eau en Na<sup>+</sup> et Cl

- Ecrivez l'équation de dissolution :
- Vous dissolvez 17,55 g de NaCl dans 50 cm³ d'eau. Sachant que: Na = 23 et Cl =35,5
  - Calculez la masse molaire de NaCl :
  - Quel est le nombre de moles de chlorure de sodium ?.....
- En déduire le nombre de moles de Na<sup>+</sup> et de Cl⁻ présents dans la solution.

- Calculez la concentration en ions sodium et la concentration en ions chlorure .

### $2^{\circ}$ - Calcul du pH :

→ La concentration en ions H<sup>+</sup> est la quantité d'ions H<sup>+</sup> par Litre de solution :

Le pH d'uns solution aqueuse peut s'exprimer par la relation suivante :

$$pH = -log [H^+]$$

ce qui s'écrit aussi :

$$[\mathbf{H}^{+}] = 10^{-p\mathbf{H}}$$

→ Complétez le tableau suivant :

| Solutions           | рН | concentrations en ions<br>H <sup>+</sup> |
|---------------------|----|------------------------------------------|
| vinaigre            |    | 0,01                                     |
| acide chlorhydrique | 1  |                                          |
| eau distillée       |    | 10-7                                     |
| eau de Javel        | 10 |                                          |
| soude               |    | 10 <sup>-12</sup>                        |
| citron              | 4  |                                          |

- → Quelle est la solution qui contient le plus d'ions H<sup>+</sup> ? .....
- → Quelle est la solution qui contient le moins d'ions H<sup>+</sup> ? ......
- → Lorsque la concentration en ions H<sup>+</sup> diminue, comment varie le pH?.....

| $3^{\circ}$ - <u>Utilisation de la calculatrice</u> : (On utilise la touche log de la calculatrice) a - <u>Calcul du pH</u> : $[H^{+}] = 5 \times 10^{-4} \text{ mol.L}^{-1}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| on lit: pH =                                                                                                                                                                  |
| b - <u>Calcul de la concentration en ions H</u> <sup>+</sup> : $pH = 3,2$                                                                                                     |
| on lit : $[H^+] =$ $4^{\circ}$ - <u>Produit ionique de l'eau</u> :                                                                                                            |
| Dans l'eau, on a l'équilibre suivant : $H_2O + H_2O \rightarrow H_3O^+ + OH^-$                                                                                                |
| Acidité et basicité d'une solution peuvent être caractérisées par (ou                                                                                                         |
| $[H_3O^+] = 10^{-pH} \text{ mol.L}^{-1}$                                                                                                                                      |
| <u>exemple</u> : * Il en résulte qu'une solution contenant $10^{-2}$ mol d'ions $H_30^+$ par litre:                                                                           |
| $\rightarrow$ [H <sub>3</sub> O <sup>+</sup> ] =                                                                                                                              |
| * $[H_30^+] = 2.3 \times 10^{-5} \text{ mol.L}^{-1} \rightarrow \text{ pH} = \dots$                                                                                           |
| a - <u>pH de l'eau pure</u> :                                                                                                                                                 |
| L'eau pure est une solution neutre, elle contient en nombre égaux des ions $H_30^+$ ( ou $H^+$ ) et des ions $OH^-$ ; soit :                                                  |
| A 25°C, le <b>pH de l'eau pure est égal à 7</b> ; soit :                                                                                                                      |
| b - <u>Produit ionique de l'eau pure (Ke)</u> :                                                                                                                               |
| $[H_3O^+] = 10^{-7} \text{ mol.L}^{-1}$ $[OH^-] = 10^{-7} \text{ mol.L}^{-1}$                                                                                                 |
| d'où: $Ke = [H_3O^+] \times [OH^-] = 10^{-7} \times 10^{-7} = 10^{-14}$                                                                                                       |
| 5° - <u>Produit ionique (Ke) des solutions aqueuses</u> :                                                                                                                     |
| On constate que pour toutes les solutions aqueuses, on peut écrire :                                                                                                          |
| $[\mathbf{H}_3\mathbf{O}^+] \times [\mathbf{OH}^-] = 10^{-14} \text{ à } 25^{\circ}\text{C}.$                                                                                 |
| a - Addition d'un acide :                                                                                                                                                     |
| Si on ajoute des ions, la concentration en ions augmente, et cela conduit à un nouvel équilibre :                                                                             |
| $[\mathrm{H_3O}^+] \dots \qquad \qquad \Rightarrow \qquad \mathrm{pH} \dots \dots \ 7$                                                                                        |
| [OH ]b - Addition d'une base :                                                                                                                                                |

Si on ajoute des ions ......, la concentration en ions ..... augmente et cela conduit à un nouvel équilibre :

[H<sub>3</sub>O<sup>+</sup>] .....

⇒ pH ...... 7

[ OH ] .....

#### c - Retenons:

→ Le produit ionique de l'eau à 25°C est :

$$Ke = [H_3O^+] \times [OH^-] = 10^{-14}$$

Il garde une valeur constante.

→ On peut en déduire :

$$[H_3O^+] = \frac{10^{-14}}{[OH^-]}$$

$$[OH^{-}] = \frac{10^{-1}}{[H_{3}O^{+}]}$$

## III - Mesure du pH:

1° - Le papier pH:

C'est un papier imprégné d'un mélange d'indicateurs colorés. Avec un agitateur, on dépose quelques gouttes de solution à tester sur le papier, la lecture du pH se faire par comparaison des couleurs. Cette méthode est rapide mais peu précise.

 $2^{\circ}$  - Le pH mètre :

Une sonde plonge dans la solution à tester. C'est un appareil qui contient une électrode double et un voltmètre; la tension varie en fonction du pH. Les mesures sont très précises.

#### 3° - Importance du pH:

### a - Dans le milieu biologique :

\* Le sang humain doit avoir un pH compris entre 7,38 et 7,52 ; si la valeur du pH n'est pas comprise dans cet intervalle, il y a risque de mort :

- par coma si pH= 7,1

- par tétanisation si pH > 7.8

\* suc gastrique : pH  $\approx 1$ 

\* urine 5 < pH < 8

\* salive 6.5 < pH < 7.5

#### b - Dans l'industrie:

- pharmaceutique : aspirine pH = 8
- cosmétique : crème de beauté
  - savons acides pour épiderme délicat
  - shampooing traitant à pH < 7
  - fixateur permanente pH = 5; produit réducteur pH = 9; oxydant de coloration pH = 1.

### **IV - Applications**:

| Exercice 1 : A                           | A quels ic     | ons sont dues les                                                      | propriétés acide                                  | s d'une so                  | lution?                                             |                |
|------------------------------------------|----------------|------------------------------------------------------------------------|---------------------------------------------------|-----------------------------|-----------------------------------------------------|----------------|
|                                          |                |                                                                        |                                                   | •••••                       |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
| Exercice 2 : (                           | Compléte       | r le tableau suiv                                                      | ant :                                             |                             |                                                     |                |
|                                          |                | [ <b>H</b> <sub>3</sub> <b>0</b> <sup>+</sup> ] en mol.L <sup>-1</sup> | [ <b>OH</b> <sup>-</sup> ] en mol.L <sup>-1</sup> | pН                          | nature de la<br>solution                            |                |
| S                                        | Solutio<br>n 1 | 1,6 x 10 <sup>-4</sup>                                                 |                                                   |                             |                                                     |                |
| S                                        | Solutio<br>n 2 |                                                                        | 10 <sup>-7</sup>                                  |                             |                                                     |                |
| S                                        | olutio<br>n 3  |                                                                        | $3.2 \times 10^{-5}$                              |                             |                                                     |                |
| S                                        | Solutio<br>n 4 |                                                                        |                                                   | 6,2                         |                                                     |                |
| Evereice 3 :                             | ^ 20°C 1       | litra d'agu pout                                                       | dissoudre 4.75I                                   | de chloru                   | re d'hydrogène; si                                  | la dissolution |
|                                          |                | -                                                                      | $T = 24 \text{ L.mol.}^{-1}$                      | ae ciiioru                  | ic a nyarogene; si                                  | ia uissoiuuoli |
| Jiiiotao bali                            |                |                                                                        | <u></u>                                           |                             |                                                     |                |
| - Calculer la                            | a concenti     | ration de la solu                                                      | tion $(H^+,Cl^-)$ :                               |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
|                                          |                |                                                                        | ••••••                                            | •••••                       |                                                     |                |
| o - Calculer le                          | e pH de la     | a solution :                                                           |                                                   |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
| Evereine 4 . (                           | Cook out o     | ua IICI                                                                | → H <sup>+</sup> +                                | Cl <sup>-</sup>             |                                                     |                |
| E <b>xercice 4</b> : S<br>Calculer le pF |                |                                                                        | nt les concentrati                                |                             | es suivantes :                                      |                |
| - c = (                                  | 0,2 mol./I     | L :                                                                    |                                                   |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |
| - c= 0                                   | ),05 mol./     | L:                                                                     |                                                   |                             |                                                     |                |
| Exercice 5 : S<br>Calculer le pH         |                |                                                                        |                                                   | 2H <sup>+</sup> + concentra | SO <sub>4</sub> <sup>2-</sup> ations sont les suiva | antes:         |
| - c = (                                  | 0,3 mol./I     | ·                                                                      |                                                   |                             |                                                     |                |
| -c=0                                     | 0,05 mol.      | /L :                                                                   |                                                   |                             |                                                     |                |
| - c =                                    | 0,007 mo       | 1./L :                                                                 |                                                   |                             |                                                     |                |
| -                                        | ,              |                                                                        |                                                   |                             |                                                     |                |
|                                          |                |                                                                        |                                                   |                             |                                                     |                |