Les molécules

$I-\underline{Introduction:}$

Dans de nombreux composés chimiques, les atomes forment des édifices possédant un nombre d'atomes déterminé. Une molécule est une particule électriquement neutre formé d'un nombre limité d'atomes.

déterminé. Une molécule est une particule électriquement neutre f	ormé d'un nombre limité d'atomes.			
II – <u>activité 1 :</u> 1 – Représentez la structure électronique d'un atome d'hydrogène <i>[H</i>				
3 – Combien lui manque-t-il d'électrons pour saturer sa couche externe ?				
4 – Complétez les représentations : a – 2 atomes d'hydrogène : b – mo	lécule de dihydrogène :			
Remarques:				
·	•			
*Pour satisfaire la règle de l'octet, les atomes peuvent formentre eux. On parle alors de <i>liaisons double</i> ou <i>triple</i> .	ner deux ou trois liaisons covalentes			
1 - Représentez la structure électronique d'un atome d'hydrogène /H 2 - Sa couche externe est-elle saturée ? 3 - Combien lui manque-t-il d'électrons pour saturer sa couche externe ? 4 - Complétez les représentations : 2 atomes d'hydrogène : b - molécule de dihydrogène : *Un atome d'hydrogène va se lier à un autre atome d'hydrogène afin de saturer sa couche externe, cela, les atomes mettent en commun des paires d'électrons, ces électrons communs constituant des cons covalentes. *On a coutume de représenter cette paire d'électrons par un tiret. *Pour satisfaire la règle de l'octet, les atomes peuvent former deux ou trois liaisons covalentes e eux. On parle alors de liaisons double ou triple. *Dans la formation d'une molécule tout se passe comme si chaque atome avait sa couche tronique externe saturée. Les seuls électrons concernés par ces échanges sont les électrons célibataire i dernière couche.				
III - Retenons :				

IV – Activité 2:

1 – Qu	ielle est la f	mule brute de l'eau ?	
• ~			

2 – Complétez les représentations : a – 2 atomes d'hydrogène et 1 atome d'oxygène :

b – molécule d'eau:

3 – Quelle est la formule développée de l'eau?

V – Généralités sur les molécules :

- Les molécules de *corps purs simples* sont constitués *d'atomes identiques*. Exemple : H₂, O₂.
- Les molécules de *corps purs composés* sont constitués *d'atomes différents*. Exemple : H₂ O , CO₂.
- Un mélange contient plusieurs sortes de molécules. (exemple : l'air est constitué de 80% de N_2 et 20% de O_2)
- Les molécules sont électriquement neutres.

VI – <u>Interprétation – Formule chimique d'un corps :</u>

1° - La formule chimique :

La formule chimique d'un corps peut renseigner :

- du point de *vue qualitatif* : elle indique quels sont les atomes qui forment la molécule.
- Du point de *vue quantitatif* : elle indique le nombre d'atomes qui composent la molécule.

<u>Activité</u>: On donne les formules des corps suivants : aspirine $C_9H_8O_4$, caféine $C_8H_{10}N_3O_2$, carbonate de calcium (craie) C_8CO_3

Donner le nom des atomes présents dans chacune des molécules, préciser à chaque fois le nombre d'atomes qui les composent.

2° - Masse molaire moléculaire :

a – Approche : Le nom chimique du sucre est le saccharose qui est un composé moléculaire de
formule $C_{12}H_{22}O_{11}$.
Cette molécule se compose de atomes de carbone,atomes d'hydrogène, et atomes
d'oxygène. Sachant que la masse molaire atomique du carbone est $M(C) = 12$ g/mol., de l'hydrogène es
M(H) = 1 g/mol., de l'oxygène est $M(O) = 16$ g/mol., on peut calculer sa masse moléculaire :
$M(C_{12}H_{22}O_{11}) = \dots$

b – **Définition** :

La masse moléculaire d'un corps est notée M et s'exprime en grammes par mole : g/mol.

VII – <u>Exercice de synthèse :</u>

Nom du composé	Formule brute	Formation de la molécule	Formule développée	Masse moléculaire
Dioxyde de carbone	CO_2			
Ammoniac	NH ₃			
Chlorure d'hydrogène	HCl			
Methane	CH ₄			
Dioxygène	\mathbf{O}_2			

Classe: 1 CO₂, 1 ESTH

SCIENCES PHYSIQUES : Contrôle N°2

Le: 26.11.98

Questions Cours:

1° - Qu'est-ce qu'une molécule ?

a - Que représente "--"?

b - Donner sa définition :

3° - Qu'est-ce qu'un corps pur simple ? Donner un exemple.

4° - Qu'est-ce qu'un corps pur composé ? Donner un exemple.

EXERCICES:

I - 1° - Faites la représentation électronique : (modèle de Bohr et de Lewis) des atomes suivants :

$${}^{1}_{1}\mathbf{H}$$
 - ${}^{7}_{3}\mathbf{Li}$ - ${}^{23}_{11}\mathbf{Na}$

 2° - Que remarquez-vous ? Où se trouve ces atomes dans le tableau de classification ?

 ${f II}$ - Le Fluor admet pour symbole ${}_9{f F}$. Quelle est sa position dans le tableau de classification ? (Justifier votre réponse)

III - Dans le tableau de classification, le phosphore se trouve dans la $V^{\grave{e}me}$ colonne, $3^{\grave{e}me}$ ligne .

1° - Combien a-t-il d'électrons?

 2° - Sachant que cet atome possède 16 neutrons, donner la carte d'identité de cet atome .

IV - Recopier et compléter le tableau ci-dessous :

Nom du composé	Formule brute	Formation de la	Formule développée
		molécule	
Gaz azote	N_2		
Dioxygène	O_2		
eau oxygénée	H_2O_2		

V - Pour chaque molécule :

- indiquer <u>quels sont les atomes qui la composent</u>.
- calculer la masse molaire moléculaire.

a - L'acide oléique de formule brute C₁₈H₃₄O₂.

b - Le nitrate de plomb de formule brute Pb(NO₃)₂.

On donne: ${}^{14}_{7}N$ - ${}^{16}_{8}$ O - ${}^{12}_{6}$ C - ${}^{1}_{1}$ H -

Classe: 1 CO ₂ , 1 ESTH	SCIENCES PHYSIQUES : Contrôle N°3	Le: 01.12.00
Questions Cours:		
I - Qu'appelle-t-on mo	Décule ? (2 points)	
	-t-on la liaison qui relie 2 atomes? Comment la	<u>définit-on?</u>
(2 points)		
III - Qu'est-ce qu'un o	corps pur simple ? Donner un exemple. (1 poin	t)
IV - Qu'est-ce qu'un o	corps pur composé? Donner un exemple. (1 po	oint)
EXERCICES :		

I - <u>Compléter le tableau ci-dessous</u>: (4 points)

Nom du composé	Formule brute	Formation de la molécule	Formule développée
Gaz azote	N_2		
Eau oxygénée	$ m H_2O_2$		

II - Pour chaque molécule : (7,5 points) ■ indiquer quels son ■ calculer la masse i	t les atomes		
1° - <u>Cholestérol : C₂₇H₄₆O :</u>		. , , 1	,
2° - <u>Nicotine : C₁₆H₁₄N₂ :</u>			
3° - <u>Urée : CO(NH₂)₂ :</u>			
III – 1° - Combien y- a –t' il d'atomes	d'oxygène da	ans une mole (d'oxygène ? (1 point)
2° - On réalise la combustion de de butane utilisée ? (1,5 point)	2 moles de b	utane (C ₄ H ₁₀). Quelle est la masse
On donne: N - 8 O - C	- ¹ H	-	
Nombre d'Avogadro : $N = 6,022 \times 10^{23}$		moles : $n = \frac{m}{M}$	
NOM:	Cl	asse:	Note:

Classe: 1 CO₂, 1 ESTH **SCIENCES PHYSIQUES**: Contrôle N°3 Le: 23.11.99

Questions Cours: (6,5 points)
I - Qu'appelle-t-on molécule? (2,5 points)
II - <u>Comment appelle-t-on la liaison qui relie 2 atomes? Comment la définit-on?</u> (2 points)
III - Qu'est-ce qu'un corps pur simple ? Donner un exemple. (1 point)
IV - Qu'est-ce qu'un corps pur composé? Donner un exemple. (1 point)
EXERCICES: (13,5 points)

V - Compléter le tableau ci-dessous : (6 points)

Nom du composé	Formule brute	Formation de la molécule	Formule développée
Gaz azote	N_2		
Dioxygène	O_2		
Eau oxygénée	$\mathrm{H_2O_2}$		

 1 - Pour chaque molecule : (7,5 points) ■ indiquer quels sont les atomes qui la composent. (1 point) ■ calculer la masse molaire moléculaire. (1,5 point) 							
1° - <u>C</u>	<u>Cholesté</u>	ol : C ₂₇ H	<u>46</u> O :				
2° - N	licotine :	: C ₁₆ H ₁₄ N	2:				
_ <u>-</u>		<u> </u>	<u></u>				
3° - <u> </u>	J <mark>rée : C</mark> (O(NH ₂) ₂	į				
			12	 1			
donne:	N -	8 O	- C	- 1 1	-		
OM.					lasse :	Note :	