LES INEQUATIONS DU 1^{er} DEGRE A UNE INCONNUE

1. Effets de l'addition et de la multiplication sur l'ordre

Activité n°1:

Comparer la longueur des segments en complétant les inégalité avec les symboles « < » ou « > ».

b	a b	b a
a c b c	$\mathbf{a} + \mathbf{c} \dots \mathbf{b} + \mathbf{c}$	$b + c \dots a + c$
a <i>c</i> b <i>c</i>	$a - c \dots b - c$	$b - c \dots a - c$

Conclusion:

Le sens de l'inégalité est-il modifié lorsqu'on ajoute ou soustrait un même nombre aux deux membres de l'inégalité ? Réponse : Le sens de l'inégalité est conservé.

On retiendra:

Si on <u>additionne ou soustrait</u> un même nombre aux deux membres d'une inégalité, on obtient une

<u>inégalité de même sens</u> : Si $a \le b$ alors : $a + c \le b + c$ et $a - c \le b - c$

Activité n°2:

Soit m un nombre positif.

Comparer les **longueurs** puis les **aires** des rectangles suivants (de même largeur m) en complétant les inégalités avec les symboles « < » ou « > ».

	Longueurs	Aires des rectangles
a b m	a b	m×a m×b
a b m	a b	m×a m×b

Conclusion:

Le sens de l'inégalité est-il modifié lorsqu'on multiplie par un même **nombre positif** les deux membres de l'inégalité ? Réponse : Le sens de l'inégalité est conservé.

Activité n°2 (suite):

Que se passe-t-il si on multiplie les membres d'une inégalité par un nombre **négatif** ? Compléter le tableau suivant :

a	b	m	Calcul de m×a	Calcul de m×b	Comparaison de a et b	Comparaison de ma et mb
5	2	-3			a b	m×a m×b
15	7	-10			a b	m×a m×b
20	10	-5,5			a b	m×a m×b
21	33	$-\frac{1}{3}$			a b	m×a m×b

Conclusion:

Que se passe-t-il pour le sens de l'inégalité lorsqu'on multiplie par un même **nombre négatif** les deux membres de l'inégalité ? Réponse : Le sens de l'inégalité est inversé.

On retiendra:

Si on multiplie ou divise par un même nombre les deux membres d'une inégalité, le sens de cette inégalité dépend du signe de ce nombre :

Si a < b et k strictement positif alors le sens est conservé : ka < kb
Si a < b et k strictement négatif alors le sens est inversé : ka > kb

2. La notion d'inéquation

Activité:

Acheté chaque mois, un magazine coûte 4,15 €.

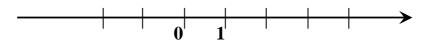
a. Compléter le tableau ci-dessous en calculant le coût total selon le nombre de magazines achetés dans l'année.

Nombre x de magazines achetés	4	6	8	9	11
Coût total en €					

- b. L'abonnement annuel pour 12 numéros coûte 37 €. Pour quelles quantités de numéros achetés individuellement l'abonnement est-il plus avantageux ?
- c. Par quelle inégalité peut-on traduire la question précédente ?

Réponse:

- b. Comme $9 \times 4,15 = 37,35$ on peut affirmer que : A partir de 9 numéros achetés individuellement l'abonnement est plus intéressant c'est-à-dire pour les quantités 9 ; 10 ; 11 et 12.
- c. La question peut se traduire par l'inégalité : 4,15 x > 37 c'est-à-dire « coût total » > « abonnement »


Bilan de l'activité :

- L'inégalité $4,15 \times 37$ où x désigne des valeurs inconnues est appelée **une inéquation**.
- **Résoudre cette inéquation**, c'est trouver les valeurs de x pour lesquelles l'inégalité est vraie.
- Ces valeurs s'appellent les solutions de l'inéquation.

3. Représentation graphique de l'ensemble des solutions d'une inéquation

Activité:

- a. Traduire par une question l'inéquation « $x \le 2$ ».
- b. Proposer cinq solutions de cette inéquation. Proposer trois nombres qui ne vérifient pas cette inéquation.
- c. Hachurer la partie de la droite graduée représentant tous les nombres qui ne vérifient pas cette inéquation.

Réponse :

- a. L'inéquation se traduit par la question : « Quels sont les nombres inférieurs ou égaux à 2 ?
- b. Cing solutions: 0; 1,5; 2; -1; -1000 Trois nombres non solutions: 3; 2,5; 1000
- c. Les nombres qui ne vérifient pas l'inéquation sont tous ceux strictement supérieurs à 2.
- d. Ainsi on hachure la partie de l'axe qui n'est pas solution c'est-à-dire, à droite depuis le nombre 2.

On retiendra:

L'ensemble des solutions d'une inéquation est représenté par la partie non hachurée d'un axe gradué.

Plus généralement :

Après transformations, une inéquation s'écrit finalement sous une des 4 formes du tableau :

Inéquations après transformations	Représentation graphique de l'ensemble des solutions
x ≤ a	$\frac{1}{2} \left \frac{1}{2} \right \frac{1}{2} \left \frac{1}{2} \right$
x < a	$\frac{1}{2} \left \frac{1}{2} \right \frac{1}{2} \left \frac{1}{2} \right$
$x \ge a$	$\frac{\frac{1}{1}}{\frac{1}{1}}$
x > a	$\frac{1}{1}$ a

Position du crochet :

- Avec les symboles « ≤ » et « ≥ » le nombre « a » appartient à l'ensemble des solutions donc le crochet positionné en « a » est dirigé vers la partie solution.
- Avec les symboles « < » et « > » le nombre « a » n'appartient pas à l'ensemble des solutions donc le crochet positionné en « a » est dirigé vers la partie hachurée.

4. Les transformations d'une inéquation pour la résolution

Exemple de résolution d'inéquation :

Soit l'inéquation $-2x - 3 \ge 4$.

Il s'agit de déterminer toutes les valeurs de l'inconnue x pour lesquelles l'inégalité est vraie.

Pour cela on transforme l'inéquation jusqu'à obtenir l'une des quatre formes du tableau précédent.

- Pour « neutraliser -3 », on ajoute 3 à chaque membre : $-2x 3 + 3 \ge 4 + 3$ soit $-2x \ge 7$
- Pour « neutraliser -2 », on divise par -2 chaque membre en changeant le sens de l'inégalité : x ≤ $-\frac{7}{2}$

Les solutions sont donc tous les nombres inférieurs ou égaux à -3,5.

On retiendra:

- Transformer une inéquation permet de trouver ses solutions.
- <u>Les différentes transformations</u> possibles d'une inéquation en une inéquation qui possèdent les mêmes solutions sont :
 - ajouter ou en retrancher un même nombre aux deux membres sans changer le sens de l'inégalité
 - multiplier ou en diviser par un même nombre les deux membres et le sens de l'inégalité est :
 - conservé si ce nombre est strictement positif
 - inversé si ce nombre est strictement négatif