LES UNITÉS DE MESURES

La maîtrise des unités de mesure et des conversions en multiples et sous-multiples est <u>essentielle</u> en sciences physiques et en mathématiques :

- pour la compréhension des énoncés d'exercices
- pour la rédaction des questions à traiter.

Par conséquent, vous devez être capable :

- d'associer dans un texte le symbole de mesure employée à sa grandeur
- de reconnaître le préfixe accolé à une unité de mesure
- ➤ de convertir une unité en multiples ou sous-multiples

1. Système international d'unités de mesure (SI)

Les unités les plus courantes à mémoriser :

QUELQUES	UNITÉS DE BASE	
GRANDEUR	UNITE LEGALE	SYMBOLE
Longueur ou distance	mètre	m
Angle plan	radian	rad
Masse	kilogramme	kg
Temps	seconde	S
Energie	Joule	J
Pression	Pascal	Pa
Capacité	Litre	L
Quantité de matière	mole	mol
Température thermodynamique	Kelvin	K
Intensité lumineuse	candela	cd
Force	Newton	N

2. Multiples et sous-multiples

On entend par <u>multiples et sous-multiples des unités de mesures</u> le produit de l'unité légale de la mesure par une puissance de 10.

Les multiples et sous-multiples à mémoriser :

Multiple ou sous-multiple	FACTEUR par lequ multiplié		ité est	PREFIXE	SYMBOLE
Multiple	1 000 000 000	=	10 ⁹	giga	G
Multiple	1 000 000	=	10^{6}	méga	M
Multiple	1 000	=	10^{3}	kilo	k
Multiple	100	=	10^{2}	hecto	h
Multiple	10	=	10^{1}	déca	da
Sous-multiple	0,1	=	10^{-1}	déci	d
Sous-multiple	0,01	=	10^{-2}	centi	c
Sous-multiple	0,001		10^{-3}	milli	m
Sous-multiple	0,000 001	=	10 ⁻⁶	micro	μ

Pour former le symbole d'un multiple (ou sous-multiple) d'une unité de mesure, on accole le <u>symbole</u> de ce même multiple (en préfixe) à celui de l'unité.

Exemples:

 $1 \text{ Gm} = 1 \text{ gigamètre} = 10^9 \text{ m} = 1 \text{ milliard de mètres}$

1 μ **g** = 1 micro**gramme** = 10^{-6} **g** = 1 millionième de **gramme**

1 daN = 1 décaNewton = 10 N = 10 Newton

1 kWh = 1 kiloWattheure = 1000 Wattheures

3. Exemples de conversion entre unités de mesure S.I. et unités dérivées

Conversions de masse avec une unité dérivée : (Rappels 1 quintal (q) = 100 kg et 1 tonne (T) = 1000 kg)

		MULT	IPLES			Unité		SO	US-MU	JLTIPL	ES	
méga			kilo	hecto	déca		déci	centi	milli			micro
			kg	hg	dag	g	dg	cg	mg			μg
T	q											

Conversions de superficies avec une unité dérivée : (Rappel 1 are (a) = 100 m²)

]	MULT	IPLES			Un	ité	SOUS-MULTIPLES					
kr	n²	hr	m²	da	m²	n	l^2	dı	n²	CI	n²	m	ım²
	1	0	0	0	0	0	0						
			1,	8	7	0	0						
			ha		a								
			1	0	0	0	0						
					1								

 $1 \text{ km}^2 = 1\ 000\ 000\ \text{m}^2$; $1,87\ \text{hm}^2 = 18\ 700\ \text{m}^2$; $1\ \text{ha} = 100\ \text{a} = 10\ 000\ \text{m}^2$

 $1 a = 1 dam^2$

Conversions entre volumes et capacités : (Rappel $1 L = 1 dm^3$)

M	MULTIPLES Unité						SOUS-MULTIPLES									
	dam ³			m^3			dm ³			cm ³			mm^3			
		1	0	0	0											
					0	0	0	1,	7							
								L	dL	cL	mL					
					1	0	0	0								
								0,	0	0	1					

 $1 \text{ dam}^3 = 1 000 \text{ m}^3$; $1.7 \text{ dm}^3 = 0.0017 \text{ m}^3$; $1 \text{ m}^3 = 1 000 \text{ L}$; $1 \text{ cm}^3 = 1 \text{ mL} = 0.0001 \text{ L}$

3. Exemples de conversion entre unités de mesure S.I. et unités dérivées

Conversions de masse avec une unité dérivée : (Rappels 1 quintal (q) = 100 kg et 1 tonne (T) = 1000 kg)

		MULT	IPLES			Unité		SO	US-MU	JLTIPL	ES	
méga			kilo	hecto	déca		déci	centi	milli			micro
			kg	hg	dag	g	dg	cg	mg			μg
T	q											

Conversions de superficies avec une unité dérivée : (Rappel 1 are (a) = 100 m²)

		MULT:	IPLES			Un	ité		SOUS-MULTIPLES						
kı	m²	hr	m²	da	m²	m	l^2	dr	m²	cr	m²	m	m²		
	1	0	0	0	0	0	0								
			1,	8	7	0	0								
			ha		a										
			1	0	0	0	0								
					1										

 $1 \text{ km}^2 = 1\ 000\ 000\ \text{m}^2$; $1,87\ \text{hm}^2 = 18\ 700\ \text{m}^2$; $1\ \text{ha} = 100\ \text{a} = 10\ 000\ \text{m}^2$; $1\ \text{a} = 1\ \text{dam}^2$

Conversions entre volumes et capacités : (Rappel 1 L = 1 dm³)

MU	JLTIPI	LES		Unité			SOUS-MULTIPLES								
	dam ³		m^3				dm^3			cm^3			mm^3		
		1	0	0	0										
					0	0	0	1,	7						
								L	dL	cL	mL				
					1	0	0	0							
								0,	0	0	1				
	l dam ³ =	= 1 000	m^3	; 1,7	$7 \text{ dm}^3 =$	0,0017	7 m^3	; 1	$m^3 = 1$	000 L	;	1 cm ³	= 1 mL	L = 0.00	