Corrigé du sujet nº 15

On commence par calculer l'aire du rectangle R_2 . On a donc $\mathcal{A}(R_2) = PQ \times LN$. On utilise le théorème de Thalès dans les triangles ABC et ALN, on obtient : $\frac{AL}{AB} = \frac{LN}{BC}$, d'où

$$LN = \frac{AL}{AB} \times BC$$
, or $\frac{AL}{AB} = \frac{AP}{AB}$, donc $\mathcal{A}(R_2) = PQ \times (AR - PQ - QR) \times \frac{BC}{AB}$.

 $LN = \frac{AL}{AB} \times BC$, or $\frac{AL}{AB} = \frac{AP}{AR}$, donc $\mathcal{A}(R_2) = PQ \times (AR - PQ - QR) \times \frac{BC}{AR}$. Si on ne fait varier que la hauteur du rectangle R_2 en fixant celles du rectangle R_1 et du triangle ABC. $\mathcal{A}(R_2)$ est maximale lorsque $PQ = \frac{AR - QR}{2}$.

L'aire du rectangle R_1 est $\mathcal{A}(R_1) = QR \times MO$. On utilise le théorème de Thalès dans les triangles ABC et AMO, on obtient : $\frac{\dot{A}M}{AB} = \frac{MO}{BC}$, d'où

triangles
$$ABC$$
 et AMO , on obtient : $\overline{AB} = \overline{BC}$, d'ou $MO = \frac{AM}{AB} \times BC$, or $\frac{AM}{AB} = \frac{AQ}{AR}$, donc $A(R_1) = QR \times (AR - QR) \times \frac{BC}{AR}$. En remplaçant PQ par $\frac{AR - QR}{2}$ dans l'expression de R_2 , on obtient :
$$A(R_2) = (\frac{AR - QR}{2})^2 \times \frac{BC}{AR}$$

$$\mathcal{A}(R_2) = (\frac{AR - QR}{2})^2 \times \frac{BC^2}{AR}$$

On calcule
$$\frac{\mathcal{A}(R_1) + \mathcal{A}(R_2)}{\mathcal{A}(ABC)} = \frac{\left(\frac{AR - QR}{2}\right)^2 \times \frac{BC}{AR} + QR \times (AR - QR) \times \frac{BC}{AR}}{\frac{AR \times BC}{2}}.$$

L'expression $\frac{\mathcal{A}(R_1) + \mathcal{A}(R_2)}{\mathcal{A}(ABC)}$ est maximale lorsque le numérateur est maximal, car le dénominateur est constant. On peut considérer le numérateur comme un polynôme du second degré en de QR, celui-ci atteint son maximum en $QR = \frac{AR}{3}$. En remplaçant QR par $\frac{AR}{3}$ dans $\frac{A(R_1) + A(R_2)}{A(ABC)}$, on obtient : $\frac{2}{3}$.

