Solution proposée par Frédéric de Ligt au problème de la quinzaine n°3

On note *u* la suite définie par $u_1 = 1$, $u_2 = 6$ et $-u_{n+2}u_n + u_{n+1}^2 = 1$.

On considère la suite v définie par $v_{n+2} = 6v_{n+1} - v_n$ avec $v_1 = 1$ et $v_2 = 6$. On va montrer que les suites u et v coïncident. On s'intéresse pour cela à la matrice $Q_n = \begin{pmatrix} v_{n+2} & -v_{n+1} \\ v_{n+1} & -v_n \end{pmatrix}$ et à la matrice $Q = \begin{pmatrix} 6 & -1 \\ 1 & 0 \end{pmatrix}$ avec $\det(Q) = 1$. Un raisonnement par récurrence permet de montrer que $Q_n = Q^{n+1}$:

La relation est vraie au rang 1 car on a
$$Q_1 = \begin{pmatrix} v_3 & -v_2 \\ v_2 & -v_1 \end{pmatrix} = \begin{pmatrix} 35 & -6 \\ 6 & -1 \end{pmatrix} = Q^2$$
. Soit maintenant n un entier non nul, supposons que $Q_n = Q^{n+1}$. On a alors $Q^{n+2} = Q^{n+1}Q = Q_nQ = \begin{pmatrix} v_{n+2} & -v_{n+1} \\ v_{n+1} & -v_n \end{pmatrix} \begin{pmatrix} 6 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 6v_{n+2} - v_{n+1} & -v_{n+2} \\ 6v_{n+1} - v_n & -v_{n+1} \end{pmatrix} = \begin{pmatrix} v_{n+3} & -v_{n+2} \\ v_{n+2} & -v_{n+1} \end{pmatrix} = Q_{n+1}$.

En utilisant la propriété des déterminants : $\det(AB) = \det(A)\det(B)$, on a donc $\det(Q_n) = \det(Q^{n+1}) = \det(Q)^{n+1} = 1$. Par conséquent $\det(Q_n) = -v_{n+2}v_n + v_{n+1}^2 = 1$. Les suites u et v sont bien égales terme à

La suite u peut donc aussi se définir par récurrence de la façon suivante : $u_{n+2} = 6u_{n+1} - u_n$ avec $u_1 = 1$ et $u_2 = 6$; on peut alors observer que cette suite ne prend que des valeurs entières.

On a donc $-(6u_{n+1} - u_n) u_n + {u_{n+1}}^2 = 1$, soit ${u_n}^2 + {u_{n+1}}^2 + 2u_n u_{n+1} = 8u_n u_{n+1} + 1$ ou encore $(u_n + u_{n+1})^2 = 8u_n u_{n+1} + 1$. La quantité $8u_n u_{n+1} + 1$ est bien un carré parfait.

Ouelques remarques

- -On aurait pu aussi montrer que $4u_nu_{n+1}+1=(u_n-u_{n+1})^2$ est un carré parfait, de même que $8u_n^2 + 1 = (u_{n+1} - 3u_n)^2$.
- -En prenant $u_1 = 1$ et $u_2 = 2$ et la définition initiale de u, on obtient $u_{n+2} = 2u_{n+1} u_n$, la suite u est celle des entiers naturels.
- -En prenant $u_1 = 1$ et $u_2 = 3$, on obtient $u_{n+2} = 3u_{n+1} u_n$, les termes de la suite u sont les nombres de Fibonacci de rangs pairs F_{2n} pour n entier non nul. En effet $F_{2n+4} = F_{2n+3} + F_{2n+2}$; $F_{2n+3} = F_{2n+2} + F_{2n+1}$; $F_{2n+2} = F_{2n+1} + F_{2n}$ d'où l'on tire $F_{2n+4} - F_{2n+2} = F_{2n+2} + F_{2n+1}$ puis $F_{2n+4} - 2$ $F_{2n+2} = F_{2n+2} - F_{2n}$ et enfin $F_{2n+4} = 3F_{2n+2} - F_{2n}$. En procédant de la même façon qu'auparavant on a l'identité $(u_{n+1} - u_n)^2 = u_{n+1}u_n + 1$ qui se traduit alors par la relation $F_{2n+2}F_{2n} + 1 = F_{2n+1}^2$.