Le problème de la quinzaine.

Problème n°10.

x, y, z sont des nombres entiers tels que (x + y + z) divise $(x^2 + y^2 + z^2)$. Montrer qu'il existe une infinité d'entiers naturels non nuls tels que (x + y + z) divise $(x^n + y^n + z^n)$.

Solution.

Pour *n* entier naturel non nul, on a l'identité suivante que l'on peut facilement vérifier :

$$x^{n+3} + y^{n+3} + z^{n+3} = (x + y + z)(x^{n+2} + y^{n+2} + z^{n+2}) - (xy + yz + xz)(x^{n+1} + y^{n+1} + z^{n+1}) + (x^n + y^n + z^n)xyz$$

On note
$$A_n=x^n+y^n+z^n$$
. On a $xy+yz+xz=({A_1}^2-A_2)/2$ et l'identité précédente prend la forme : $A_{n+3}=A_1\ A_{n+2}-1/2({A_1}^2-A_2)A_{n+1}+xyzA_n$ (1)

On particularise le problème au cas où x, y et z sont des entiers et on peut maintenant examiner les questions de divisibilité. On suppose d'après l'énoncé que A_1 divise A_2 . Le facteur ½ dans la quantité $1/2(A_1^2 - A_2)$ pose problème, aussi il va falloir distinguer deux cas.

- Si A_1 est impair il en est de même de A_2 et alors A_1 divise $1/2(A_1^2 A_2)$. On a alors d'après (1) que A_1 divise A_{n+3} $xyzA_n$. On prouve par une récurrence facile que, pour tout entier naturel k, on a d'une part que A_{3k+1} est toujours divisible par A_1 , et d'autre part que A_{3k+2} est toujours divisible par A_1 (puisque A_2 est divisible par A_1).
- Si A_1 est pair il en est de même de A_2 et même de A_n . Par conséquent dans l'égalité (1), $A_{n+1}/2$ est un entier et comme A_1 divise $(A_1^2 A_2)$ alors A_1 divise $1/2(A_1^2 A_2)A_{n+1}$. On retrouve le fait que A_1 divise A_{n+3} $xyzA_n$ et on conclut comme précédemment.