$$\cos\left(\frac{\pi}{20}\right) + \cos\left(\frac{9\pi}{20}\right) = ?$$

$$\psi = \cos\left(\frac{\pi}{20}\right) + \cos\left(\frac{9\pi}{20}\right) = \cos\left(\frac{\pi}{20}\right) + \sin\left(\frac{\pi}{20}\right). \ \psi \text{ est positif et } \psi^2 = 1 + \sin\left(\frac{\pi}{10}\right) \Longrightarrow \boxed{\psi = \sqrt{1 + \sin\left(\frac{\pi}{10}\right)}}$$

$$\cos\left(\frac{\pi}{5}\right) = 1 - 2\sin^2\left(\frac{\pi}{10}\right) \text{ et } \sin\left(\frac{\pi}{10}\right) \text{ est positif} \Longrightarrow \left|\sin\left(\frac{\pi}{10}\right) = \sqrt{\frac{1 - \cos\left(\frac{\pi}{5}\right)}{2}}\right|$$

De $X^4 + X^3 + X^2 + X + 1 = \prod_{k=1}^{4} \left(X - e^{i\frac{2k\pi}{5}} \right)$ on déduit, par identification des termes qui nous intéressent :

$$\cos\left(\frac{2\pi}{5}\right) + \cos\left(\frac{4\pi}{5}\right) = \frac{-1}{2}$$

Soit
$$\phi = \cos\left(\frac{2\pi}{5}\right)$$
, on obtient de $\cos\left(\frac{4\pi}{5}\right) = 2\phi^2 - 1$: $4\phi^2 + 2\phi - 1 = 0 \Longrightarrow \phi = \frac{\sqrt{5} - 1}{4} \Longrightarrow \cos\left(\frac{\pi}{5}\right) = \sqrt{\frac{\sqrt{5} + 3}{8}}$

D'où, en simplifiant après avoir remplacé dans les expressions encadrées précédentes : $\cos\left(\frac{\pi}{20}\right) + \cos\left(\frac{9\pi}{20}\right) = \frac{1}{2}\sqrt{3+\sqrt{5}}$

Remarque sur la « dernière ligne droite » (simplification des calculs)

Soit $\omega \in \mathbb{Q}$ tel que $\sqrt{\omega} \notin \mathbb{Q}$ alors $\mathbb{Q}[\sqrt{\omega}]$ est un \mathbb{Q} -espace vectoriel de dim 2 dont une base est donnée par $\mathcal{B}(1; \sqrt{\omega})$.

Propriété.

Soit $\omega \in \mathbb{Q}$ tel que $\sqrt{\omega} \notin \mathbb{Q}$. Soient $a, b \in \mathbb{Q}$ et $\Delta = a^2 - \omega b^2$. Alors :

 $\sqrt{\Delta} \in \mathbb{Q}$ et au moins l'un des deux réels $\sqrt{\frac{a \pm \sqrt{\Delta}}{2}} \in \mathbb{Q} \iff \exists c, d \in \mathbb{Q}$ tels que $\sqrt{a + b\sqrt{\omega}} = c + d\sqrt{\omega}$