Equation fonctionnelle 27/1/2014

Énoncé du problème

Déterminer toutes les fonctions $f : \mathbb{R} \longrightarrow \mathbb{R}$ continues vérifiant :

pour tout réel x, on a :
$$f(8x) + f(18x) = 2f(12x)$$
 et $f(0) = 2014$

Solution

Étant donné $x_0 \in \mathbb{R}$ fixé, soit la suite $(y_n)_{n \in \mathbb{N}} = f\left(\frac{2^n}{3^n}x_0\right)$. En remplaçant x par $\frac{2^n}{8 \times 3^n}x_0$ dans l'équation fonctionnelle, on obtient:

$$f\left(\frac{2^{n}}{3^{n}}x_{0}\right) + f\left(\frac{9 \times 2^{n}}{4 \times 3^{n}}x_{0}\right) = 2f\left(\frac{3 \times 2^{n}}{2 \times 3^{n}}x_{0}\right)$$

$$f\left(\frac{2^n}{3^n}x_0\right) + f\left(\frac{2^{n-2}}{3^{n-2}}x_0\right) = 2f\left(\frac{2^{n-1}}{3^{n-1}}x_0\right)$$

On obtient donc la relation de récurrence :

$$y_n + y_{n-2} = 2y_{n-1} \iff y_n - y_{n-1} = y_{n-1} - y_{n-2}$$

On montre immédiatement par récurrence que si $y_0 \neq y_1$, alors $(y_n)_{n \in \mathbb{N}}$ est une suite arithmétique de raison $y_1 - y_0 \neq 0$. Celle-ci aurait alors pour limite $\pm \infty$, ce qui est en contradiction avec la continuité supposée de f, car nous devrions avoir :

$$\lim_{n \to +\infty} f\left(\frac{2^n}{3^n} x_0\right) = f\left(\lim_{n \to +\infty} \frac{2^n}{3^n} x_0\right) = f(0)$$

On en déduit que $y_0 = y_1$ et que par conséquant $y_0 = y_n$ pour tout n, donc $f(x_0) = f(0)$ pour tout $x_0 \in \mathbb{R}$.

$$f$$
 est donc la fonction constante égale à $f(0) = 2014$

Remarquons, que si on n'impose pas à f d'être définie en 0, toute fonction $\varphi: \mathbb{R}^* \longrightarrow \mathbb{R}$, où a et k sont des $x \longmapsto k . \ln |a.x|$ constantes réelles, vérifie l'équation fonctionnelle, car :

- $\varphi(8x) + \varphi(18x) = k \cdot \ln(144a^2 \cdot x^2)$,
- $2\varphi(12x) = k \cdot \ln \left[(12a \cdot x)^2 \right]$

J'ai l'intuition que ce sont les fonctions (continues) sur le plus grand domaine de défintion possible, à vérifier cette équation fonctionnelle, je n'ai pas pris le temps de le démontrer et laisse la question ouverte.