Solution proposée par Frédéric de Ligt au problème de la quinzaine n°10

Il s'agit d'un théorème assez classique démontré par Frederick Soddy en 1937, la propriété porte d'ailleurs le nom de « Soddy's hexlet ». Cette propriété a été découverte un siècle plus tôt et indépendamment au Japon comme l'atteste un sangaku daté de 1822.

Nombre de sphères bleues

Soit V la sphère verte, M_1 une des deux sphères marron et A le point de tangence entre ces deux sphères. Une inversion de pôle A transforme les sphères V et M_1 en deux plans parallèles P_V et P_{M1} . Comme le pôle A n'appartient ni à la seconde sphère marron M_2 ni à aucune des sphères bleues B_i , les inverses de ces sphères sont encore des sphères M_2 ' et B_i '. Comme la sphère M_2 et les sphères B_i sont tangentes à V et M_1 , les sphères inverses M_2 ' et M_2 ' et

Un plan parallèle à P_V et P_{M1} qui passe par le centre O' de la sphère M_2 ' passe aussi par les centres O', des sphères B_i '. Tous les triangles formés par O' et deux centres de sphères B_i ' tangentes entre elles sont équilatéraux et leur côté vaut le diamètre commun de M_2 ' et B_i '. Par conséquent les centres O', des sphères B_i ' sont les sommets d'un hexagone régulier. Il y a en définitive 6 sphères bleues autour des sphères marron.

Relation entre les rayons des sphères bleues

Une relation entre le rayon d'une sphère et le rayon de la sphère inverse :

Soit une sphère d'inversion de rayon R et de centre A qui transforme une sphère S ne passant pas par A de rayon r et de centre O en une sphère S' de rayon r' et de centre O'. La droite (AO) coupe S en M et N. Si M' et N' sont les inverses de M et N, le droite (AO) contient les points O' (qui n'est pas l'inverse de O!), M' et N'. Par définition de l'inversion de pôle A on a les relations \overline{AM} . $\overline{AM'} = R^2$ et \overline{AN} . $\overline{AN'} = R^2$. Par ailleurs par définition de la puissance du point A par rapport à la sphère S': $\overline{AM'}$. $\overline{AN'} = AO'^2 - r'^2$.

D'où l'on déduit les égalités
$$|\overline{AM} - \overline{AN}| = 2r = \left| \frac{R^2}{\overline{AM'}} - \frac{R^2}{\overline{AN'}} \right| = R^2 \left| \frac{\overline{AN'} - \overline{AM'}}{\overline{AN'}.\overline{AM'}} \right| = \frac{R^2 2r'}{AO'^2 - r'^2}.$$

On a donc la relation entre le rayon r d'une sphère et le rayon r' de la sphère inverse :

$$\frac{1}{r} = \frac{AO'^2 - r'^2}{r'R^2}$$
 (1)

On revient à notre problème.

Notons R le rayon d'une sphère d'inversion centrée en A, r le rayon de la sphère marron et $r_1, ..., r_6$ les rayons des six sphères bleues (la numérotation respectant l'ordre de ces sphères dans le collier). On a vu que les rayons des sphères B'_i sont tous égaux et on note r' ce rayon commun.

Dans l'hexagone régulier de sommets O'₁, ..., O'₆, les quadrilatères O'₁O'₃O'₄O'₆, O'₁O'₂O'₄O'₅ et O'₂O'₃O'₅O'₆ sont des rectangles. On considère par exemple le rectangle O'₁O'₃O'₄O'₆. On établit facilement à l'aide du théorème de Pythagore la relation (en introduisant par exemple les points P et Q projetés orthogonaux de A respectivement sur (O'₁O'₃) et sur (O'₄O'₆)):

$$O'_1A^2 + O'_4A^2 = O'_3A^2 + O'_6A^2$$

D'après l'égalité précédente on a aussi :

$$O'_1A^2 - r'^2 + O'_4A^2 - r'^2 = O'_3A^2 - r'^2 + O'_6A^2 - r'^2$$

Ou encore en divisant par R^2r ' les deux membres de l'égalité :

$$\frac{O'_1A^2 - r'^2}{R^2r'} + \frac{O'_4A^2 - r'^2}{R^2r'} = \frac{O'_3A^2 - r'^2}{R^2r'} + \frac{O'_6A^2 - r'^2}{R^2r'}$$

Et finalement d'après la relation (1):

$$\frac{1}{r_1} + \frac{1}{r_4} = \frac{1}{r_3} + \frac{1}{r_6}$$

On démontrerait de même en considérant le rectangle O'₁O'₂O'₄O'₅ que :

$$\frac{1}{r_1} + \frac{1}{r_4} = \frac{1}{r_2} + \frac{1}{r_5}$$

La considération du rectangle O'₁O'₃O'₄O'₆ serait redondante. D'où la relation cherchée entre les rayons des six sphères bleues

$$\frac{1}{r_1} + \frac{1}{r_4} = \frac{1}{r_3} + \frac{1}{r_6} = \frac{1}{r_2} + \frac{1}{r_5}$$