Solution proposée par Frédéric de Ligt au problème de la quinzaine n°6

On associe bijectivement à chaque plante un entier entre 1 et 6. Le problème consiste alors à dénombrer les carrés latins diagonaux d'ordre 6. On note \mathcal{L} cet ensemble. On va restreindre la recherche aux éléments de \mathcal{L} dont les entiers de la première diagonale sont rangés dans un ordre fixe. Plus précisément, si on note $d_{i,j}$ l'entier placé à l'intersection de la i ème ligne et de la j ième colonne, on va chercher le cardinal du sous-ensemble \mathcal{L} de \mathcal{L} constitué des carrés tels que $d_{i,i} = i$. En observant que \mathcal{L} est stable par la symétrie s dont l'axe est la première diagonale d'un carré, et que l'on a même $s(\mathcal{L}) = \mathcal{L}$, puisque s est une involution, on peut encore restreindre davantage l'étude au sous-ensemble \mathcal{L} de \mathcal{L} constitué des carrés de \mathcal{L} tels que $d_{4,3} < d_{3,4}$.

Les possibilités pour les couples $(d_{4,3}; d_{3,4})$ sont alors (1; 6), (2; 5), (2; 6), (5; 6), (1; 5) et (1; 2). Si $(d_{4,3}; d_{3,4}) = (1; 6)$ ou (2; 5), il y a seulement 8 deuxièmes diagonales possibles et pour chacune d'elles les carrés latins n'aboutissent pas :

1					5	1					2	1					5	1					2
	2			4			2			4			2			3			2			3	
		3	6					3	6					3	6					3	6		
		1	4					1	4					1	4					1	4		
	3			5			3			5			4			5			4			5	
2					6	5					6	2					6	5					6
1					3	1					4	1					3	1					4
	2			1			2			1			2			6			2			6	
		3	5					3	5					3	5					3	5		
		2	4					2	4					2	4					2	4		
	6			5			6			5			1			5			1			5	,
	U			·																			

Pour les quatre autres possibilités, cela conduit alors à une partition de \mathfrak{D}' en quatre sous-ensembles \mathfrak{D}'_1 , \mathfrak{D}'_2 , \mathfrak{D}'_3 et \mathfrak{D}'_4 . Il n'est pas nécessaire de les étudier toutes, une seule suffira. En effet, si c_1 désigne la permutation de la première et de la sixième colonne d'un carré, c_2 la permutation de la seconde et de la cinquième colonne, l_1 la permutation de la première et de la sixième ligne, l_2 la permutation de la seconde et de la cinquième ligne, t_1 la transposition qui échange les 1 et les 6 dans un carré, t_2 la transposition qui échange les 2 et les 5 dans un carré et enfin $f_1 = s \circ t_1 \circ c_1 \circ l_1$ et $f_2 = t_2 \circ c_2 \circ l_2$, on a $f_2(\mathfrak{D}'_1) = \mathfrak{D}'_2$, $f_1(\mathfrak{D}'_2) = \mathfrak{D}'_3$, $f_2(\mathfrak{D}'_3) = \mathfrak{D}'_4$ et $f_1(\mathfrak{D}'_4) = \mathfrak{D}'_1$ (f_1 et f_2 sont des involutions). Donc $\operatorname{card}(\mathfrak{D}'_1) = \operatorname{card}(\mathfrak{D}'_2) = \operatorname{card}(\mathfrak{D}'_3) = \operatorname{card}(\mathfrak{D}'_4)$.

Les diagonales à explorer dans \mathfrak{D}_1 sont les suivantes :

					5	1					4	1					4	1					5
	2			4			2			1			2			3			2			3	
		3	6					3	6					3	6					3	6		
		2	4					2	4					2	4					2	4		
	1			5			3			5			1			5			1			5	
3					6	5					6	5					6	4					6
1					3	1					5	1					5	1					3
	2			1			2			1			2			1			2			4	
		3	6					3	6					3	6					3	6		
		2	4					2	4					2	4					2	4		
	4			5			3			5			4			5			1			5	
5					6	4					6	3					6	5					6

A partir des huit deuxièmes diagonales possibles, seules les deux premières aboutissent à des carrés latins, générant chacune 8 carrés latins.

Après quelques essais, il ressort donc que ॐ₁ contient 16 carrés :

1	3	4	2	6	5		1	3	1	2	6	5	1	3	4	2	6	5	1	3	4	2	6	5
	_	4		6	_			_	4		6	-	1	_	4	_	6	_			_		6	5
6	2	1	5	4	3		6	2	5	1	4	3	6	2	1	5	4	3	6	2	5	1	4	3
2	5	3	6	1	4		4	5	3	6	1	2	4	5	3	6	1	2	2	5	3	6	1	4
5	6	2	4	3	1		5	6	2	4	3	1	5	6	2	4	3	1	5	6	2	4	3	1
4	1	6	3	5	2		2	1	6	3	5	4	2	1	6	3	5	4	4	1	6	3	5	2
3	4	5	1	2	6		3	4	1	5	2	6	3	4	5	1	2	6	3	4	1	5	2	6
	_		_		_	l		_		_		_		_		_	-	_		_		_		
1	6	4	2	3	5		1	6	4	2	3	5	1	6	4	2	3	5	1	6	4	2	3	5
6	2	5	1	4	3		6	2	5	1	4	3	6	2	1	5	4	3	6	2	1	5	4	3
2	5	3	6	1	4		4	5	3	6	1	2	4	5	3	6	1	2	2	5	3	6	1	4
5	3	2	4	6	1		5	3	2	4	6	1	5	3	2	4	6	1	5	3	2	4	6	1
4	1	6	3	5	2		2	1	6	3	5	4	2	1	6	3	5	4	4	1	6	3	5	2
3	4	1	5	2	6		3	4	1	5	2	6	3	4	5	1	2	6	3	4	5	1	2	6
1	6	5	3	2	4		1	6	5	2	3	4	1	6	5	2	3	4	1	6	5	3	2	4
4	2	6	5	1	3		6	2	4	5	1	3	4	2	6	5	1	3	6	2	4	5	1	3
2	5	3	6	4	1		2	5	3	6	4	1	2	5	3	6	4	1	2	5	3	6	4	1
3	1	2	4	6	5		3	1	2	4	6	5	3	1	2	4	6	5	3	1	2	4	6	5
6	3	4	1	5	2		4	3	6	1	5	2	6	3	4	1	5	2	4	3	6	1	5	2
5	4	1	2	3	6		5	4	1	3	2	6	5	4	1	3	2	6	5	4	1	2	3	6
1	6	5	3	2	4		1	6	5	2	3	4	1	6	5	2	3	4	1	6	5	3	2	4
4	2	6	5	1	3			2		5	1	3		2		5	1	3		2	4	5	1	3
	1	_		_			6		4	_	1		4	1	6				6	1		Ť		
2	1	3	6	4	5		2	1	3	6	4	5	2	1	3	6	4	5	2	1	3	6	4	5
3	5	2	4	6	1		3	5	2	4	6	1	3	5	2	4	6	1	3	5	2	4	6	I
6	3	4	1	5	2		4	3	6	1	5	2	6	3	4	1	5	2	4	3	6	1	5	2
5	4	1	2	3	6		5	4	1	3	2	6	5	4	1	3	2	6	5	4	1	2	3	6

D'où card(
$$\circlearrowleft$$
) = card(\circlearrowleft '₁) + card(\circlearrowleft '₂) + card(\circlearrowleft '₃) + card(\circlearrowleft '₄) = 64; card(\circlearrowleft) = card(\circlearrowleft) + card(s (\circlearrowleft)) = 128; card(s) = nombre de permutations de l'ensemble (1,2,3,4,5,6) × card(\circlearrowleft) = 720 × 128 = 92 160.

Il y a donc 92 160 carrés latins diagonaux d'ordre 6.