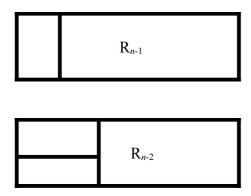
Solution proposée par Frédéric de Ligt au problème de la quinzaine numéro 9

On note R_n un rectangle de dimensions $2 \times n$ où n est un entier non nul et a_n le nombre de façons de disposer les pavés 1×2 dans R_n . On a $a_1 = 1$ et $a_2 = 2$. Pour n > 2, il n'y a que deux possibilités pour débuter le pavage de R_n :



D'où la relation $a_n = a_{n-1} + a_{n-2}$ avec $a_1 = 1$ et $a_2 = 2$. On remarque que $a_n = F_{n+1}$ où (F_n) est la suite de Fibonacci avec $F_1 = F_2 = 1$. L'expression du terme général de la suite (F_n) est connue :

$$a_n = F_{n+1} = \frac{\left(\frac{1+\sqrt{5}}{2}\right)^{n+1} - \left(\frac{1-\sqrt{5}}{2}\right)^{n+1}}{\sqrt{5}}$$