PROJET INTERDISCIPLINAIRE MTS²

Collège Camille Guérin de Vouneuil/Vienne Académie de Poitiers

Présentation du projet

- Constats dans plusieurs matières
- Objectifs du Projet
- - Disciplines concernées et déroulement
- Critères d'évaluation
- Exemples de problèmes posés
- Modalités d'évaluation

Constats

- Les professeurs des matières scientifiques constatent de nombreux décrochages d'élèves dès le niveau de 5^{ème}.
- - En particulier en Mathématiques
 - Manque de concret
 - Cloisonnement avec les autres disciplines
 - Plus de projets IDD
- - Phénomène en augmentation au cours des années suivantes.

Objectifs

- - Donner le goût pour les matières scientifiques.
- - Donner du sens aux outils mathématiques
- Développer la démarche scientifique.
- - Faciliter l'évaluation des compétences dans le cadre du socle commun.
- - Motiver l'orientation des élèves vers les domaines scientifiques (PDMF).

Disciplines concernées Déroulement

Les 4 disciplines scientifiques sont concernées, regroupées en binômes :
 Maths / Technologie
 Maths / Sciences Physiques MTS²
 Maths / SVT

- Le travail est organisé sous forme de recherche de résolution de tâches complexes.
- Le travail s'effectue en groupe de 4 à 8 élèves selon les ressources en matériel scientifiques.

Disciplines concernées Déroulement

- Les 5 classes du niveau 5^{ème} sont concernées, soient 124 élèves sur les 580 élèves du collège.
- Chaque projet se déroule sur 5 semaines à raison d'une heure par semaine.
- Chaque classe de 5^{ème} réalise 3 projets au cours de l'année, un dans chaque regroupement de matières,.

Disciplines concernées Déroulement

• 15 semaines de projet sont nécessaires. 15h de Mathématiques sont attribuées au projet pour chaque classe. Elles sont prises sur les 4h hebdomadaires.

 6 Enseignants (3 maths, SVT, technologie et physique) mènent le projet.

Critères d'évaluation du projet

Evaluation du projet

- Les compétences du socle commun.
- L'implication dans les travaux d'équipe.
- L'autonomie dans la mise en place d'une démarche scientifique.
- L'intérêt porté aux sciences

• Evaluation des élèves

- Compétence 3 : les éléments Mathématiques et la culture scientifique
- Compétence 6 : travail collectif
- Compétence 7 : l'initiative et l'autonomie

Exemples de problèmes posés

- Projet Maths / Technologie
 - · Construction de la maquette d'une maison et de son intérieur.
 - Elaboration du plan, des cloisons et murs extérieurs, ainsi que de la charpente et de la toiture.
 - Calcul des différentes longueurs à l'échelle pour le plan et pour la maquette.
 - Elaboration d'un document d'explication du projet

L'évaluation

		Auto- évaluation	Evaluation
C6	Travailler en équipe, rechercher une solution en groupe, se répartir les tâches.	R ou AT	R ou AT
C3	Savoir observer et modéliser de façon élémentaire. (Proposer un plan et définir les éléments de la maquette)	R ou AT	R ou AT
C3	Se repérer dans l'espace : utiliser un plan	R ou AT	R ou AT
C3	Raisonner avec des longueurs et des aires (proposer les longueurs, les largeurs et les aires des pièces)	R ou AT	R ou AT
C3	Calculer des longueurs proportionnelles. Calculer une échelle.	R ou AT	R ou AT
C7	Savoir être autonome: Identifier un problème et mettre au point une démarche de résolution. (Positionner les ouvertures et définir les éléments à construire)	R ou AT	R ou AT

Exemples de problèmes posés

- Projet Maths / SVT
 - Vous êtes techniciens en laboratoire d'Analyses.
 - Le niveau de l'eau des bassins d'une pisciculture diminue de quelques centimètres au plus chaud de l'année, peut être en raison de l'évaporation.
 - Votre chef de laboratoire vous demande de vérifier si :
 la teneur en dioxygène dissout varie avec le volume d'eau.
 - Vous devrez consigner toutes les étapes de votre démarche et rédiger un compte rendu précis de vos résultats et conclusions.

L'évaluation

Obje	<u>ectifs</u>	Auto- évaluation	Evaluation formative
C3 Ra	Identifier un problème	R ou AT	R ou AT
C3	Proposer des suppositions Ra	R ou AT	R ou AT
C3	Proposer un protocole expérimental Ra	R ou AT	R ou AT
C3 Ré	Mettre en place le protocole retenu	R ou AT	R ou AT
C 3	Réaliser un tableau, réaliser un graphique Ré	R ou AT	R ou AT
C3 P	Décrire les résultats	R ou AT	R ou AT
C4	Utiliser un logiciel de traitement de texte Ré	R ou AT	R ou AT
C6	Travailler en équipe I	R ou AT	R ou AT
C 7	S'investir I	R ou AT	R ou AT

L'évaluation

Obje	<u>ectifs</u>	Auto- évaluation	Evaluation formative
C3 Ra	Identifier un problème	R ou AT	R ou AT
C3	Proposer des suppositions Ra	R ou AT	R ou AT
C3	Proposer un protocole expérimental Ra	R ou AT	R ou AT
C3 Ré	Mettre en place le protocole retenu	R ou AT	R ou AT
C 3	Réaliser un tableau, réaliser un graphique Ré	R ou AT	R ou AT
C3 P	Décrire les résultats	R ou AT	R ou AT
C4	Utiliser un logiciel de traitement de texte Ré	R ou AT	R ou AT
C6	Travailler en équipe I	R ou AT	R ou AT
C 7	S'investir I	R ou AT	R ou AT

Modalités d'évaluation

- Lors du travail de groupe
 - Observation des élèves en séance
 - * l'organisation
 - * l'entraide
 - * 1'investissement
- Au cours de chaque séance
 - Restitution orale par un élève
 - * présentation de la démarche
- * langage adapté

Modalités d'évaluation

- A partir des productions des élèves
 - Evaluation des productions individuelles de chaque séance.
 - Evaluation bilan en fin de projet.

• Intégration du bilan des évaluations dans le livret personnel de compétences de chaque élève.

LPC