

CONCOURS GÉNÉRAL DES MÉTIERS **ELEEC**

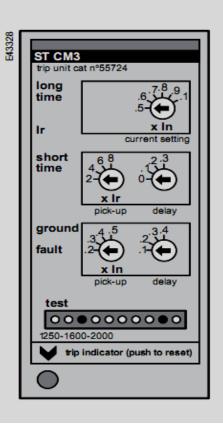
Session 2014

Entreprise de traitement thermique

DOSSIER TECHNIQUE

Durée: 5 heures

Lycée Charles TELLIER Condé sur Noireau Lycée Edmond DOUCET Equeurdreville Lycée Juliot de la MORANDIERE Granville

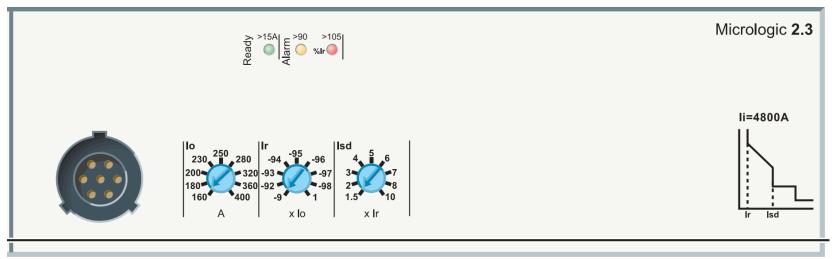


Caractéristiques électriques / Electrical characteristics

					CM12	50	CM16	00	CM20	00	CM250	00	CM320	00
					N	Н	N	Н	N	Н	N	Н	N	Н
Courant assignée		In (A)		40°C	1250		1600		2000		2500		3200	
Rated current				50°C	1250		1470		1840		2310		3000	
				60°C	1250		1330		1660		2075		2700	
Tension d'isolement Rated insulation voltage		Ui (V)			750		750		750		750		750	
Tension assignée d'emp		Ue (V)	CA/AC 50/60Hz		690		690		690		690		690	
Rated operational voltag	je		CC/DC											
Nombre de pôles Number of poles					3, 4		3, 4		3, 4		3, 4		3	
		lcu	CA/AC 50/60Hz	220/240V	85	125	85	125	85	125	85	125	85	125
	selon CEI 947-2 (kA eff)			380/415V	70	85	70	85	70	85	70	85	70	85
Rated ultimate breaking according to IEC 947-2 (capacity ′k∆ eff)			440V	65	85	65	85	65	85	65	85	65	85
Catégorie d'emploi : B	(io (Cii)			500V	50		50		50		50		50	
Utilization category: B				660/690V	50		50		50		50		50	
			CC/DC (ka)	≤ 250V										
				500V										
Performance de coupure Rated service breaking	•	lcs = lcu	X		50%		50%		50%		50%		50%	
Courant de courte durée Rated short time for 1s	admissible pe	ndant 1s	kA (rms)		32		32		32		32		32	
Performance Nema P	ouvoir de coup	ure (0 - F0) selon Nema AB1	240V	85	125	85	125	85	125	85	125	85	125
	lated breaking		AD4	480V	65	85	65	85	65	85	65	85	65	85
(0	0 - C0) accordir	ng to ivema	ABI	600V	50		50		50		50		50	
Temps de coupure maxi Maximum breaking time				(ms)	50		50		50		50		50	

Caractéristiques techniques / Technical characteristics

Choix des unités de contrôle Choices of control units



		ST CM1	ST CM2	ST CM3
Protection long-retard LR Long-time delay protection LT	Seuil (A) Ir = In x Threshold (A) Ir = In x	0,5 à/to 1	0,5 à/to 1	0,5 à/to 1
	Seuil de temporisation (s) Threshold delay (s)	Fixe Fixed	Fixe Fixed	Fixe Fixed
Protection court retard CR Short-time ST	Seuil (A) Im =Ir x Threshold (A) Ir = In x	3 à/to 6	2 à/to 8	2 à/to 8
	Temp. maxi de coupure (ms) Maxi breaking time (ms)	50	50 à/to 330	50 à/to 330
Protection instantanée I (kA) Instantaneous pick-up I (kA)		35	35	35
Prtection défaut terre Earth fault protection	Seuil (A) Ih =In x Threshold (A) Ih = In x			0,2 à/to 0,5
	Temp. maxi de coupure (ms) Maxi breaking time (ms)			130 à/to 460

Disjoncteur COMPACT NSX

Disjoncteurs				NS	X250				NSX400					NSX630				
niveaux de pouvoir de coupure				F	N	Н	S	L	F	N	Н	S	L	F	N	Н	S	L
caractéristiques suivant CEI/IEC 60	947-2																	
courant assigné (A)	In	40 °C		250					400					630				
nombre de pôles				2 (3) ,	3, 4				3, 4					3, 4				
pouvoir de coupure (kA eff.)																		
	lcu	CA 50/60 Hz	220/240 V	85	90	100	120	150	40	85	100	120	150	40	85	100	120	150
			380/415 V	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150
		44	440 V	35	50	65	90	130	30	42	65	90	130	30	42	65	90	130
			500 V	30	36	50	65	70	25	30	50	65	70	25	30	50	65	70
			525 V	22	35	35	40	50	20	22	35	40	50	20	22	35	40	50
			660/690 V	8	10	10	15	20	10	10	20	25	35	10	10	20	25	35
pouvoir de coupure de service (kA eff.)																		
	lcs	CA 50/60 Hz	220/240 V	85	90	100	120	150	40	85	100	120	150	40	85	100	120	150
			380/415 V	36	50	70	100	150	36	50	70	100	150	36	50	70	100	150
			440 V	35	50	65	90	130	30	42	65	90	130	30	42	65	90	130
			500 V	30	36	50	65	70	25	30	50	65	70	25	30	50	65	70
			525 V	22	35	35	40	50	10	11	11	12	12	10	11	11	12	12
			660/690 V	8	10	10	15	20	10	10	10	12	12	10	10	10	12	12

Micrologic 2.3 400 A
Exemple de réglage:
régler le seuil de protection
pour obtenir une protection
contre les surcharges
réglée à 240 A
Io = 250 et Ir = 0.96
Seuil Ir: 250x0.96 = 240 A

Détermination des sections de câbles

Les tableaux ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit.

Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur.

Pour obtenir la section des conducteurs de phase, il faut :

- déterminer une lettre de sélection qui dépend du conducteur utilisé et de son mode de pose
- déterminer un cœfficient K qui caractérise l'influence des différentes conditions d'installation.

Ce cœfficient K s'obtient en multipliant les facteurs de correction, K1, K2, K3, Kn

- le facteur de correction K1 prend en compte le mode de pose
- le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte
- le facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant
- le facteur de correction du neutre chargé
- le facteur de correction dit de symétrie Ks.

Lettre de sélection

type d'éléments conducteurs	mode de pose	lettre de sélection
conducteurs et câbles multiconducteurs	sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux plafond sous caniveau, moulures, plinthes, chambranles	В
	en apparent contre mur ou plafond sur chemin de câbles ou tablettes non perforées	С
câbles multiconducteurs	 sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus 	Е
câbles monoconducteurs	 sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus 	F

Facteur de correction K1

lettre de sélection	cas d'installation	K1
В	câbles dans des produits encastrés directement dans des matériaux thermiquement isolants	0,70
	• conduits encastrés dans des matériaux thermiquement isolants	0,77
	câbles multiconducteurs	0,90
	vides de construction et caniveaux	0,95
С	pose sous plafond	0,95
B, C, E, F	• autres cas	1

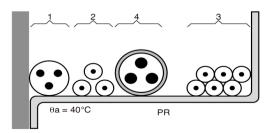
Facteur de correction K2

lettre de sélection	disposition des câbles jointifs					n K2 ou de	e câbl	es m	ultico	nduc	teurs	;	
		1	2	3	4	5	6	7	8	9	12	16	20
B, C, F	encastrés ou noyés dans les parois	1,00	0,80	0,70	0,65	0,60	0,55	0,55	0,50	0,50	0,45	0,40	0,40
С	simple couche sur les murs ou les planchers ou tablettes non perforées		0,85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	de ré	éducti	
	simple couche au plafond	1,00	0,85	0,76	0,72	0,69	0,67	0,66	0,65	0,64	pour	plus	de
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	9 câl	oles.	
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,88	0,82	0,80	0,80	0,79	0,79	0,78	0,78			

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

- 0,80 pour deux couches
- 0,73 pour trois couches
- 0,70 pour quatre ou cinq couches.

Facteur de correction K3


températures	isolation		
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)
10	1,29	1,22	1,15
15	1,22	1,17	1,12
20	1,15	1,12	1,08
25	1,07	1,06	1,04
30	1,00	1,00	1,00
35	0,93	0,94	0,96
40	0,82	0,87	0,91
45	0,71	0,79	0,87
50	0,58	0,71	0,82
55	-	0,61	0,76
60	-	0,50	0,71

Exemple d'un circuit à calculer selon la méthode NF C 15-100 § 523.7

Un câble polyéthylène réticulé (PR) triphasé + neutre (4° circuit à calculer) est tiré sur un chemin de câbles perforé, jointivement avec 3 autres circuits constitués:

- d'un câble triphasé (1er circuit)
- de 3 câbles unipolaires (2º circuit)
- de 6 cables unipolaires (3° circuit): ce circuit est constitué de 2 conducteurs par phase.

Il y aura donc 5 regroupements triphasés. La température ambiante est de 40 °C et le câble véhicule 58 ampères par phase. On considère que le neutre du circuit 4 est chargé.

La lettre de sélection donnée par le tableau correspondant est E.

Les facteurs de correction K1, K2, K3 donnés par les tableaux correspondants sont respectivement :

- K1 = 1
- \bullet K2 = 0.75
- \bullet K3 = 0.91.

Le facteur de correction neutre chargé est :

 \bullet Kn = 0.84.

Le coefficient total $K = K1 \times K2 \times K3 \times Kn$ est donc $1 \times 0.75 \times 0.91 \times 0.84$ soit :

 \bullet K = 0.57.

Détermination de la section

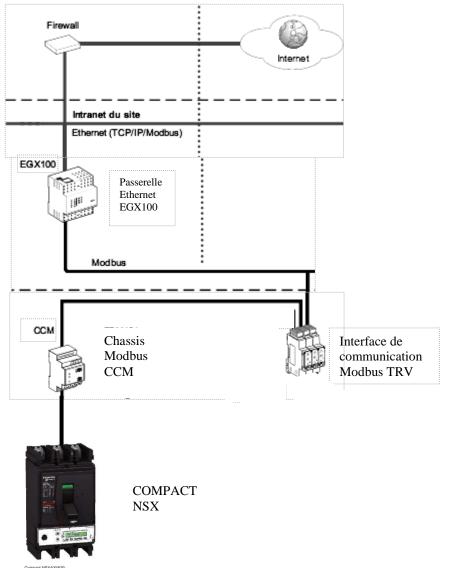
On choisira une valeur normalisée de In juste supérieure à 58 A, soit In = 63 A.

Le courant admissible dans la canalisation est Iz = 63 A. L'intensité fictive l'z prenant en compte le coefficient K est I'z = 63/0,57 = 110,5 A.

En se plaçant sur la ligne correspondant à la lettre de sélection E, dans la colonne PR3, on choisit la valeur immédiatement supérieure à 110,5 A, soit, ici :

- pour une section cuivre 127 A, ce qui correspond à une section de 25 mm²,
- pour une section aluminium 120 A, ce qui correspond à une section de 35 mm².

Détermination de la section minimale

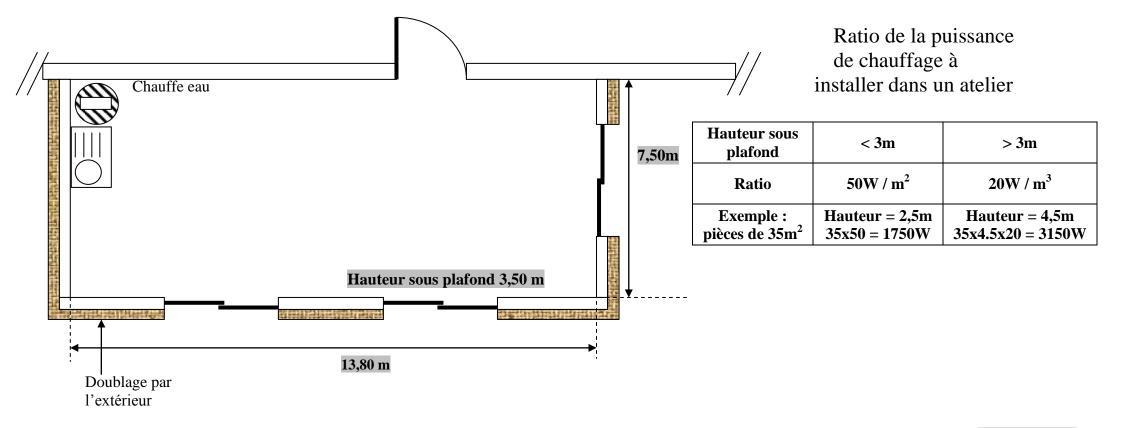

Connaissant l'z et K (l'z est le courant équivalent au courant véhiculé par la canalisation : l'z = lz/K), le tableau ci-après indique la section à retenir.

		isolant	et nom	bre de c	onducte	eurs cha	rgés (3 c	u 2)		
		caouto ou PV	houc				u éthylèi			
lettre de	В	PVC3	PVC2		PR3		PR2			
sélection	С		PVC3		PVC2	PR3		PR2		
	E			PVC3		PVC2	PR3		PR2	
	F				PVC3		PVC2	PR3		PR2
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	
(mm²)	4	28	32	34	36	40	42	45	49	
` '	6	36	41	43	48	51	54	58	63	
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946		1 083
	630					855	1 005	1 088		1 254
section	2,5	16,5	18,5	19,5	21	23	25	26	28	
aluminium	4	22	25	26	28	31	33	35	38	
(mm²)	6	28	32	33	36	39	43	45	49	
	10	39	44	46	49	54	58	62	67	
	16	53	59	61	66	73	77	84	91	
	25	70	73	78	83	90	97	101	108	121
	35	86	90	96	103	112	120	126	135	150
	50	104	110	117	125	136	146	154	164	184
	70	133	140	150	160	174	187	198	211	237
	95	161	170	183	195	211	227	241	257	289
	120	186	197	212	226	245	263	280	300	337
	150		227	245	261	283	304	324	346	389
	185		259	280	298	323	347	371	397	447
	240		305	330	352	382	409	439	470	530
	300		351	381	406	440	471	508	543	613
	400					526	600	663		740
	500					610	694	770		856
	630					711	808	899		996

Prévoir une section du conducteur neutre (Sn) égale à celle nécessaire pour les conducteurs de phases (Sph). Mais un facteur de réduction de courant admissible de 0,84 doit être pris en compte pour l'ensemble des conducteurs : Sn = Sph = Spho x 1/0,84 (facteur de dimensionnement pour l'ensemble des conducteurs, par rapport à la section Spho calculée).

• taux (ih3) > 33% :

Structure de communication d'un disjoncteur Compact



Ces tableaux peuvent être utilisés pour des longueurs de câble L \neq 100 m: il suffit d'appliquer au résultat le coefficient L/100.

Chute de tension dans 100 m de câble en 400 V/50 Hz triphasé (%)

cos = 0,	85															
câble	cuiv	re														
S (mm ²)	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
In (A)																
1	0,5	0,4														
2	1,1	0,6	0,4													
3	1,5	1	0,6	0,4												
5	2,6	1,6	1	0,6	0,4											
10	5,2	3,2	2	1,4	0,8	0,5										
16	8,4	5	3,2	2,2	1,3	0,8	0,5									
20		6,3	4	2,6	1,6	1	0,6									
25		7,9	5	3,3	2	1,3	0,8	0,6								
32		- /-	6,3	4,2	2,6	1,6	1,1	0,8	0,5							
40			7,9	5,3	3,2	2,1	1,4	1	0,7	0,5						
50			1.,0	6,7	4,1	2,5	1,6	1,2	0,9	0,6	0,5					
63			\vdash	8,4	5	3,2	2,1	1,5	1,1	0,8	0,6					
70			1	1 .	5,6	3,5	2,3	1,7	1,3	0,9	0,7	0,5				
80			1		6,4	4,1	2,6	1,9	1,4	1	0,8	0,6	0,5			
100			1		8	5	3,3	2,4	1,7	1,3	1	0,8	0,7	0,65		
125					<u> </u>	4,4	4,1	3,1	2,2	1,6	1,3	1	0,9	0,21	0.76	
160						+ ', '	5,3	3,9	2,8	2,1	1,6	1,4	1,1	1	0,97	0,77
200			1				6,4	4,9	3,5	2,6	2	1,6	1,4	1,3	1,22	0,96
250			_	_		+	0,4	6	4,3	3,2	2,5	2,1	1,7	1,6	1,53	1,2
320				_			+	+	5,6	4,1	3,2	2,6	2,3	2,1	1,95	1,54
400			+-	_		+	+	+-	6,9	5,1	4	3,3	2,8	2,6	2,44	1,92
500			+-	_		+	+	+	0,0	6,5	5	4,1	3,5	3,2	3	2,4
cos = 1										10,5	J	- ,	10,0	10,2	J	2,7
câble	cuiv	ro														
S (mm²)	1,5	2,5	4	6	10	16	25	35	50	70	95	120	150	185	240	300
In (A)	1,5	2,5	-	<u> </u>	10	10	23	00			33			100	240	
1		1							-	1.0						
	0.6	0.4	-				-			-						
	0,6	0,4	0.5													
2	1,3	0,7	0,5	0.5												
3	1,3	0,7	0,7	0,5	0.5											
2 3 5	1,3 1,9 3,1	0,7 1,1 1,9	0,7	0,8	0,5	0.5										
2 3 5 10	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7	0,7 1,2 2,3	0,8 1,5	0,9	0,5	0.6									
2 3 5 10 16	1,3 1,9 3,1	0,7 1,1 1,9 3,7 5,9	0,7 1,2 2,3 3,7	0,8 1,5 2,4	0,9 1,4	0,9	0,6									
2 3 5 10 16 20	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6	0,8 1,5 2,4 3,1	0,9 1,4 1,9	0,9	0,7	0.6								
2 3 5 10 16 20 25	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9	0,7 1,2 2,3 3,7 4,6 5,8	0,8 1,5 2,4 3,1 3,9	0,9 1,4 1,9 2,3	0,9 1,2 1,4	0,7	0,6								
2 3 5 10 16 20 25 32	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5	0,9 1,4 1,9 2,3 3	0,9 1,2 1,4 1,9	0,7 0,9 1,2	0,8	0,6							
2 3 5 10 16 20 25 32 40	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8	0,8 1,5 2,4 3,1 3,9 5 6,1	0,9 1,4 1,9 2,3 3 3,7	0,9 1,2 1,4 1,9 2,3	0,7 0,9 1,2 1,4	0,8	0,6	0,5						
2 3 5 10 16 20 25 32 40	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6	0,9 1,2 1,4 1,9 2,3 2,9	0,7 0,9 1,2 1,4 1,9	0,8 1,1 1,4	0,6 0,7 0,9	0,5	0,5					
2 3 5 10 16 20 25 32 40 50 63	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9	0,9 1,2 1,4 1,9 2,3 2,9 3,6	0,7 0,9 1,2 1,4 1,9 2,3	0,8 1,1 1,4 1,6	0,6 0,7 0,9 1,2	0,5 0,6 0,8	0,6					
2 3 5 10 16 20 25 32 40 50 63 70	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1	0,7 0,9 1,2 1,4 1,9 2,3 2,6	0,8 1,1 1,4 1,6 1,9	0,6 0,7 0,9 1,2 1,3	0,5 0,6 0,8 0,9	0,6	0,5				
2 3 5 10 16 20 25 32 40 50 63 70 80	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3	0,8 1,1 1,4 1,6 1,9 2,1	0,6 0,7 0,9 1,2 1,3 1,4	0,5 0,6 0,8 0,9 1,1	0,6 0,7 0,8	0,6	0,5			
2 3 5 10 16 20 25 32 40 50 63 70 80 100	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3	0,8 1,1 1,4 1,6 1,9 2,1 2,6	0,6 0,7 0,9 1,2 1,3 1,4 1,9	0,5 0,6 0,8 0,9 1,1 1,4	0,6 0,7 0,8 1	0,6	0,5	0,6		
2 3 5 10 16 20 25 32 40 50 63 70 80 100 125	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6	0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3	0,5 0,6 0,8 0,9 1,1 1,4 1,6	0,6 0,7 0,8 1 1,2	0,6 0,8 1	0,5 0,7 0,9	0,7	0,6	
2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1	0,6 0,7 0,8 1 1,2 1,5	0,6 0,8 1 1,3	0,5 0,7 0,9 1,2	0,7	0,8	0,6
2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6	0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2 5,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6	0,6 0,7 0,8 1 1,2 1,5	0,6 0,8 1 1,3 1,5	0,5 0,7 0,9 1,2 1,4	0,7 1 1,3	0,8	0,6
2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200 250	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7 4,6	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6 3,3	0,6 0,7 0,8 1 1,2 1,5 2 2,4	0,6 0,8 1 1,3 1,5 1,9	0,5 0,7 0,9 1,2 1,4 1,7	0,7 1 1,3 1,4	0,8 1 1,2	0,6
2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200 250 320	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2 5,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7 4,6 5,9	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6 3,3 4,2	0,6 0,7 0,8 1 1,2 1,5 2 2,4 3,2	0,6 0,8 1 1,3 1,5 1,9 2,4	0,5 0,7 0,9 1,2 1,4 1,7 2,3	0,7 1 1,3 1,4 1,9	0,8 1 1,2 1,5	0,6 0,8 0,9 1,2
2 3 5 10 16 20 25 32 40 50 63 70 80 100 125 160 200 250	1,3 1,9 3,1 6,1	0,7 1,1 1,9 3,7 5,9 7,4	0,7 1,2 2,3 3,7 4,6 5,8 7,4	0,8 1,5 2,4 3,1 3,9 5 6,1 7,7	0,9 1,4 1,9 2,3 3 3,7 4,6 5,9 6,5 7,4	0,9 1,2 1,4 1,9 2,3 2,9 3,6 4,1 4,6 5,8	0,7 0,9 1,2 1,4 1,9 2,3 2,6 3 3,7 4,6 5,9	0,8 1,1 1,4 1,6 1,9 2,1 2,6 3,3 4,2 5,3	0,6 0,7 0,9 1,2 1,3 1,4 1,9 2,3 3 3,7 4,6	0,5 0,6 0,8 0,9 1,1 1,4 1,6 2,1 2,6 3,3	0,6 0,7 0,8 1 1,2 1,5 2 2,4	0,6 0,8 1 1,3 1,5 1,9	0,5 0,7 0,9 1,2 1,4 1,7	0,7 1 1,3 1,4	0,8 1 1,2	0,6

Détail de l'atelier de métrologie

La rénovation de l'atelier de métrologie (atelier servant à effectuer des mesures physiques sur les pièces traitées dans l'usine) a été réalisée **pour le rendre plus proche des normes de réglementation thermique RT 2012**.

Alimenté par le départ DJ15 (Métrologie, tertiaire) l'installation de cet atelier se fera en conformité avec les normes NF C15-100 régissant l'habitat. Une pompe à chaleur air/eau (modèle standard température extérieure + 7 °C) pour un plancher chauffant hydraulique a été retenue comme mode de chauffage. La production d'eau chaude se fera à l'aide d'un chauffe-eau électrique thermodynamique piloté par une horloge programmable.

Le plancher chauffant hydraulique permet d'obtenir une ambiance présentant moins d'empoussièrement compatible avec les activités de métrologie contrairement au système air/air.

CONCOURS GENERAL DES METIERS	Bac Pro ELEEC	Session 2014	Page DT7 sur DT27
------------------------------	---------------	--------------	-------------------

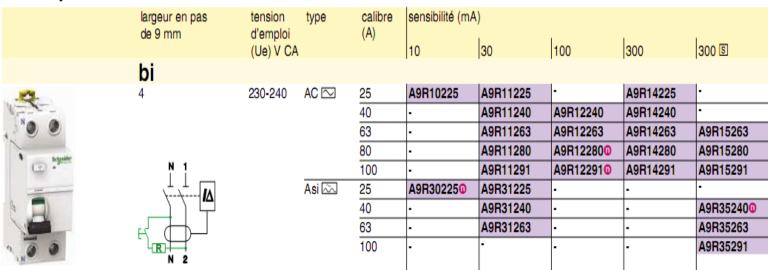
Modèle 1

Modèle 2

ERHQ - ERLQ - Gr	oupes extérieurs I n	ıverter rév	versibles Mon	ophasés					
Références : modèles s	tandards		ERHQ006BV3	ERHQ007BV3	ERHQ008BV3				
Références : modèles «	grands froids »		ERLQ006BV3	ERLQ008BV3					
	Calorifique + 7°C ext / 35°C ex	au kW	5,75						
Puissance restituée nominale	Calorifique -7°C ext / 35°C ea	au kW	4,20	5,13	5,69				
IIVIIIIIIIII	Frigorifique + 35°C ext / +7°C ex	au kW	5,12	5,86	6,08				
Puissance absorbée	chaud +7°C ext/35°C ex	au kW	1,26	1,58	2,08				
nominale	froid +35℃ ext / +7℃ ex	au kW	2,16	2,59	2,75				
Niveaux de pression sonore	chaud / froid	dB(A)	48 / 48	48 / 48	49 / 50				
Niveaux de puissance sonore	chaud / froid	dB(A)	61 / 63	61 / 63	62 / 63				
Encombrement de l'unité	HxLxP	mm	735 x 825 x 300						
Poids de l'unité		kg		56					
Label énergétique	chaud		A						
COP* / EER**	chaud / froid		4,56 / 2,37	4,34 / 2,26	4,25 / 2,15				
Type de compresseur				Swing					
Type de réfrigérant	R-410A	kg	1,7	1,7	1,7				
Plage de fonctionnement	mode froid	°C		+ 10 ~ + 43					
temp.ext.	mode chaud***	°C		- 20 ~ + 25					
Raccordements frigorifiques	diamètres liquide / gaz	. "		1/4 - 5/8					
Raccordements	alimentation	V/Ph/Hz		230/1/50					
électriques	protection	A		20					

	HPI	6 MR	8 MR	11 MR
Puissance calorifique (1)	kW	6,01	8,45	11,1
COP chaud (1)		4,0	4,01	4,28
Puissance électrique absorbée (1)	kWe	1,50	2,10	2,59
Intensité nominale	Α	6,8	9,34	11,2
Puissance frigorifique (2)	kW	5,4	7,9	9,61
EER (2)		3,8	4,0	4,5
Puissance électrique absorbée (2)	kWe	1,4	2,0	2,1

Technologie à vitesse variable : Inverter


Les compresseurs à vitesse variable sont d'abord apparus sur les systèmes Air/Air. Ils se développent maintenant sur les systèmes Air/Eau et devraient s'étendre aux machines Eau/Eau et Sol/Eau.

Le variateur de vitesse, maîtrisant totalement l'alimentation du moteur, le problème de courant de démarrage disparaît. Toutefois, d'autres aspects de Compatibilité Electromagnétique apparaissent : · Perturbations hautes fréquences : la présence d'interrupteurs fonctionnant à des fréquences élevées à plusieurs kilohertz, fait apparaître un risque de perturbations conduites et rayonnées.

La réglementation dans le domaine existe et des solutions techniques sont mises en œuvre pour éviter la propagation des perturbations.

CONCOURS GENERAL DES METIERS	Bac Pro ELEEC	Session 2014	Page DT8 sur DT27
------------------------------	---------------	--------------	-------------------

Interrupteurs différentiels iID 🐠

DT40N 10 kA (2)

courbes

calibre (A) C

C D

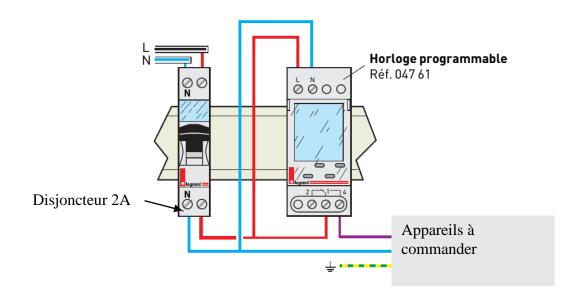
uni + neutre

largeur en pas

de 9 mm

. •		
1	21360	21371
2	21361	21372
3	21362	-
4	21363	21373
6	21364	21374
10	21365	21375
16	21366	21376
20	21367	21377
25	21368	21378
32	21369	21379
40	21370	21380

Type AC \sim


Usage courant, protégé contre les déclenchements intempestifs dus aux surtensions passagères (coup de foudre, manœuvre d'appareillage sur le réseau, etc.).

Type Asi renforcé 💫

Particulièrement adapté aux installations présentant :

- d'importants risques de déclenchements intempestifs : coups de foudre rapprochés, régime IT, présence de ballasts électroniques, présence d'appareillage incorporant des filtres antiparasites du type éclairage, micro-informatique, etc.
- des sources d'aveuglement : présence d'harmoniques ou de réjection de fréquence élevée, présence de composantes continues (diodes, ponts de diodes, alimentations à découpage, etc.).

Horloge programmable commandant le chauffe-eau thermodynamique en heures creuses

Facture d'électricité.

edf

Votre service local : ELECTRICITE DE FRANCE EDF ENTREPRISES GRANDS CLIENTS TSA 20012 - 196 AVENUE THIERS

69461 LYON CEDEX

Tél renseignements : Tél dépannage : CD : 024 Service : 0820 14 40 06 0 810 333 014

1030 A5 LONGUES UTILISATIONS Tarif

PRELEVEMENT A 15 JOURS

RUE MAXIMILIEN VOX

14110 CONDE SUR NOIREAU

SYNTHESE DES RESULTATS D	DEPUIS LE	1ER	AVRIL	2009				
PUISS. SOUSCRITES (kW) (A)		(A) 818 8		818 818 818			TRANSPASANSA FIRME KRESER	PUISSANCE REDUITE FACTUREE
								818,0KW
PUISS, ATTEINTES KW MAXI	(B)	733	818	765	789	729		TOTAL
CONSO ENERGIE ACTIVE kWH	(C)	120 168	692 237	592 859	1 071 129	766 227		3 242 620
NB HEURES UTILISATION	(C/A OU C/B)	163	846	774	1 357	1 051		4 191

ELEMENTS	ISSUS DES F	FACTURES	DE	AVRIL	. 2009 A		2010		0					
		TTEINTES k				ACTIVE kWH		EN.	REAC.	TGTE	EN. ACTIVE	EN. REACT.	TOTAL FAC	P.U. kWH
a - The subject from	Р	HP	HC	Р	HP	HC	TOTAL	P+HP	KVARH	PHI	EHT	EHT	EHT	CT HT
AVRI		721	729		172 733	122 662	295 395		43 701	0,253	7 000		12 299	4,164
MAI		697	683		161 576	112 052	273 628		40 070	0,248	6 501		11 642	4,255
JUIN		720	665		158 392	114 741	273 133		38 647	0,244	6 459		11 649	4,265
JUIL*		789	690		171 125	122 234	293 359		41 412	0,242	6 948		12 244	4,174
AOUT		712	627		81 455	55 376	136 831		20 933	0,257	3 715		8 177	5,976
SEPT		662	674		152 657	115 750	268 407		41 217	0,270	7 933		12 968	4,831
ОСТО		788	714		173 191	123 412	296 603		44 856	0,259	8 825		14 269	4,811
NOVE	74756	818	765	New - 27 (1984) - 24	160 856	121 804	282 660		41 500	0,258	14 505		21 556	7,626
DECE	733	655	691	40 551	119 187	113 351	273 089		40 253	0,252	15 905		21 944	8,035
JANV	672	625	718	39 674	115 864	114 396	269 934		38 573	0,248	15 659		21 925	8,122
FEVR	718	724	707	39 943	116 566	117 081	273 590		39 283	0,251	15 838		21 879	7,997
MARS		730	747		179 764	126 227	305 991		46 019	0,256	15 807		22 639	7,399
				120 168	1 763 366	1 359 086	3 242 620		476 464		125 095		193 191	5,958
1.000	DEP. QU	JADRATIQU	E KW HC						P		ANT DEPASSEME	:NTEHT HC	TOTAL %	FAC HT
AVRI	- F	HP 144	143						F 3	30 000	78	31	101AL 1091	
MAI		67	54								36	12	48	0,9 0,4
JUIN		173	22								93	12 5	98	0,4
JUIL*		156	22 62								84	14	98	0,8
AOUT		156 95 14	02								45	14	45	0,6
SEPT		14	29								13	22	35	0,0
ОСТО		252	121								229	22 91	320	0,3 2,2
NOVE		202	121								229	91	320	2,2
DECE														
JANV													10000	
FEVR														
MARS		151	168								435	212	647	2,9
WARS		151	108								1013	387	1400	0,7
100 miles 100 miles 200 de	:										1013:	301:	1400:	0,1

TOTAL	DES FACTURES DE		AVRIL 2009	A MARS 2	2010							
	PRIME FIXE	DEPASS.	EN. ACTIVE	EN. REACT.	EN. RES/	F. DIVERS	SOUPL. FIN	TOTAL FAC	AVT	TAXES LOC	TOTAL FAC P.U. kW	/H
	E HT	E HT	E HT	E HT	REST.E HT	E HT	E HT	EHT	E	E HT	ETTC CT HT	
	48 871	1 400	125 095			18 244	-419	193 191	37 866		231 057 5	,958

Comment choisir la bonne version tarifaire ?

Si la puissance est constante dans toutes les périodes tarifaires : le choix sera guidé par le nombre d'heures d'utilisation annuelle de votre puissance maximum souscrite.

<u>Méthode de calcul</u>: Relever sur votre facture le total annuel « CONSO ENERGIE ACTIVE kWH » et le diviser par votre «PUISS.SOUSCRITES (kW) »

Si cette durée d'utilisation est :

- Inférieur à 2000 h environ : choisir la version Courtes utilisations
- Comprise entre 2000 h et 3500 h environ : choisir la version Moyennes Utilisations
- Comprise entre 3500 h et 6300 h environ : choisir la version Longues Utilisations
- Supérieur à 6300 h : choisir la version Très Longues Utilisations.

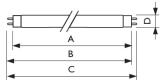
Les primes fixes et les prix des kWh des différentes versions tarifaires s'entendent pour une fourniture comportant chaque mois d'hiver pendant la pointe et les heures pleines, une proportion d'énergie réactive égale à 40 % de la quantité d'énergie active consommée le même mois.

Si en hiver cette proportion est dépassée, les kvarh en excédent vous sont facturés à un taux fixé par les barèmes de prix.

Les dépassements :

Si vos puissances atteintes sont supérieures à vos puissances souscrites, une prime complémentaire de dépassement vous sera facturée selon un barème.

Le compteur électronique calcule chaque mois, pour chaque période tarifaire, directement la valeur quadratique selon la méthode de calcul : la racine carrée de la somme des carrés des dépassements constatés sur chacune des périodes d'intégrations de 10 minutes.


Les valeurs indiquées représentent une quantité de dépassement.

Lampes Tubes Fluorescents

MASTERTL-D Eco

Nouveau: versions 16 W

Présentation

Tube fluorescent haut rendement de diamètre 26 mm, développé pour économiser l'énergie.

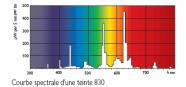
Caractéristiques

- 10% d'économies au minimum pour les applications en intérieur (par rapport à un tube T8).
- Directement interchangeable avec les tubes T8 des installations existantes
- Fonctionne sur ballast ferromagnétique ou électronique.
- Flux lumineux similaire à un tube haut rendement à une température de 30°C (température ambiante d'un luminaire en fonctionnement).
- Excellent maintien du flux lumineux >90%, pendant toute la durée de vie du tube.
- Très bon rendu des couleurs (IRC>80).
- Produit Phare Vert : faible taux de mercure (2 mg).

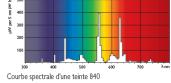
Avantages utilisateur

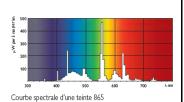
- Permet d'améliorer l'efficacité énergétique en changeant simplement de tube.
- Durée de vie de 12 000 heures sur ballast ferromagnétique et 17 000 heures sur ballast électronique.
- Répond à la norme EN 12464-1 qui prescrit des sources à IRC 85 pour l'éclairage des postes de travail.
- Gradation possible.

Spécificités


Les performances du MASTER TL-D Eco ne sont pas maximales (chute de flux) dans les applications où la température autour de la lampe est inférieure à 30°C. Par conséquent, il est déconseillé d'utiliser le MASTER TL-D Eco sur réglette nue.


Applications


Convient aux applications en intérieur, telles que les bureaux, écoles, administrations, hôpitaux. N'est pas recommandé pour les applications où la température ambiante est inférieure à 20°C.


Désignation	Classe Energétique	IRC	Puissance lampe EM (W)	Puissance lampe EL (W)	UE	N° dimensions	Flux EM (lm) à 30°C	Code
MASTER TL-D Eco 16W/830	Α	85	16. 0	14. 0	25	1	1300	268570 40
MASTER TL-D Eco 16W/840	Α	85	16. 0	14. 0	25	1	1300	268617 40
MASTER TL-D Eco 16W/865	Α	85	16. 0	14. 0	25	1	1225	268716 40
MASTER TL-D Eco 32W/830	Α	85	32. 0	29. 0	25	2	3000	264589 40
MASTER TL-D Eco 32W/840	Α	85	32. 0	29. 0	25	2	3000	264626 40
MASTER TL-D Eco 32W/865	Α	85	32. 0	29. 0	25	2	2850	264640 40
MASTER TL-D Eco 51W/830	Α	85	51. 0	45. 0	25	3	4800	264664 40
MASTER TL-D Eco 51W/840	Α	85	51. 0	45. 0	25	3	4800	264701 40
MASTER TL-D Eco 51W/865	Α	85	51. 0	45. 0	25	3	4650	264725 40

Dimensions (mm)	Α	В	С	D
1	589. 8	596. 9	604	28
2	1199,4	1206,5	1213,6	28
3	1500,0	1507,1	1514,2	28

	Flux lumineux EM (im) à 30°C dans le luminaire*
MASTER TL-D Eco 16W/840	1300
MASTER TL-D Super 80 18W/840	1325
TL-D Standard 18W/33	1175
MASTER TL-D Eco 16W/865	1225
MASTER TL-D Super 80 I8W/865	1275
TL-D Standard 18W/54	1025
MASTER TL-D Eco 32W/840	3000
MASTER TL-D Super 80 36W/840	3000
TL-D Standard 36W/33	2630
MASTER TL-D Eco 32W/865	2850
MASTER TL-D Super 80 36W/865	2830
TL-D Standard 36W/54	2300
MASTER TL-D Eco 51W/840	4800
MASTER TL-D Super 80 58W/840	4800
TL-D Standard 58W/33	4200

*le flux lumineux de la teinte 830 est identique à celui de la teinte 840

MASTER TL-D Eco 51W/865

TL-D Standard 58W/54

MASTER TL-D Super 80 58W/865

4470

3650

compact office DIM Réf.: 2010001

Description des fonctions

- Détecteur de présence (PIR)
- Zone de détection carrée
- Mesure de lumière mixte
- Sortie de commutation Éclairage (relais, 230 V) et interface 1-10 V
- Commande automatique de l'éclairage avec régulation à lumière constante
- Fonctionnement commutable en mode automatique ou semi-automatique
- Raccordement possible d'un bouton-poussoir pour la commutation et la variation manuelles
- Valeur de consigne de la luminosité, temporisation automatique et délai de veille réglables
- Automatique ou semi-automatique : En mode « Automatique », l'éclairage s'allume ou s'éteint automatiquement en fonction de la présence et de la luminosité. En mode « Semi-automatique », l'activation doit toujours s'effectuer manuellement, la désactivation est automatique.

Commande manuelle forcée : la commutation ou la variation manuelle de l'éclairage peut s'effectuer à tout moment à l'aide d'un bouton-poussoir.

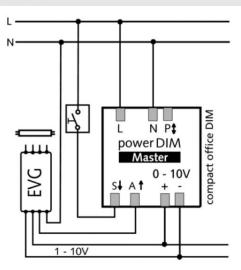
Le délai de veille garantit une luminosité minimale et procure un sentiment de sécurité dans les hôpitaux et les établissements de soins, en ne coupant pas l'éclairage en cas d'absence et en passant en mode veille pendant la durée paramétrée.

Montage en parallèle Maître-Esclave : 10 détecteurs (max.) peuvent être raccordés les uns aux autres pour étendre la zone de détection. Le détecteur « maître » active la charge. En tant qu'esclaves, tous les autres détecteurs ne fournissent que des informations concernant la présence.

Montage en parallèle Maître-Maître : 10 détecteurs (max.) peuvent être raccordés les uns aux autres pour la commande de plusieurs groupes de luminaires. Chaque maître commande son propre groupe de luminaires conformément à sa propre mesure de luminosité. La présence est détectée en commun par tous les détecteurs.

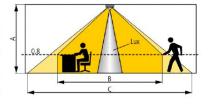
- L'appareil peut être raccordé comme maître ou esclave.
- Il est possible de monter jusqu'à 10 détecteurs en parallèle.

Le comportement de commutation du détecteur de présence est dicté par la présence et la luminosité

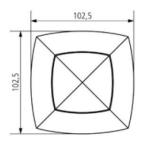

La temporisation automatique s'adapte au comportement de l'utilisateur

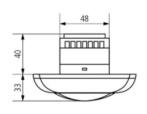
- Le détecteur de présence possède un dispositif de mesure de lumière mixte et se prête à la commande des types de lampes suivants : lampes fluorescentes (FL/PL), à halogène et à incandescence ainsi que DEL
- La zone de détection carrée permet une planification fiable et simple
- Le mode test sert à contrôler la zone de détection et le câblage
- Le réglage des paramètres s'effectue au choix par l'intermédiaire d'un potentiomètre ou de la télécommande de service QuickSet plus disponible en option

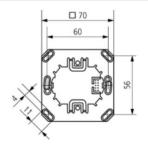
Caractéristiques techniques


Tension d'alimentation	230 V AC
Fréquence	50 Hz
Hauteur de montage recommandée	2 – 3 m
Type de montage	Montage au plafond
Consommation propre	0,8 W
Mesure de lumière	Mesure de lumière mixte
Plage de réglage	10 – 1500 lx
Temporisation lumière	10 s-20 min
Temporisation de stand-by	0 s – 60 min
Type de contact de lumière	Relais 230 V
Éclairage	Lampes à incandescence/lampes à halogène, Lampes à fluorescence, Lampes fluocompactes, LEDs

Réf.: 2010001


Zone de détection


Hauteur de montage (A)	Personnes assises (B)	Personnes en mouvement (C)
2 m	9 m² 3 m x 3 m	20 m² 4,5 m x 4,5 m ± 0,5 m
2,5 m	16 m² 4 m x 4 m	36 m² 6 m x 6 m ± 0,5 m
3 m	20 m² 4,5 m x 4,5 m	49 m² 7 m x 7 m ± 1 m
3,5 m	- 1	64 m² 8 m x 8 m ± 1 m



Plans d'encombrement

Accessoires

Boîtier saillie compact

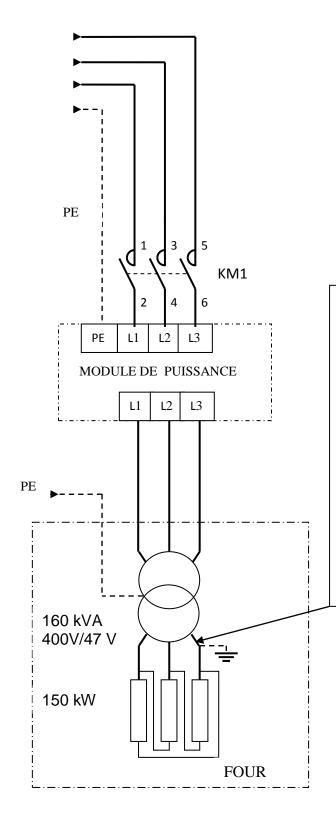
■ Réf.: 9070514 Détails ► www.theben.de

QuickSet plus

■ Réf.: 9070532 Détails ▶ www.theben.de

clic

■ Réf.: 9070515 Détails ▶ www.theben.de


QuickSafe grille de protection

■ Réf.: 9070531 Détails ▶ www.theben.de

Chauffage Four

SCHEMA DE PUISSANCE

Barres de cuivre montées en vertical

Barres cuivre rigides

Barres pleines

Détermination de l'intensité admissible Iz (A) pour des barres cuivre pleines, nues, en condition d'emploi usuel (T° ambiante 45°, échauffement admissible des barres 35°, courant 50 Hz).

· Barres cuivre perforées

Pour les barres perforées de mêmes dimensions que les barres pleines : Iz perforée = 0,9 Iz pleine.

Barres aluminium

Pour les barres aluminium de mêmes dimensions que les barres pleines : Iz aluminium = 0,78 Iz cuivre pleine.

Orientation des barres verticales Orientation des barres horizontales

Continu	Nombres de barres par					Nombres de barres par				
Section de barre	phase					Section de barre	phase			
I x e (mm)	1	П	Ш	Ш		I x e (mm)	1	II	Ш	IIII
20 x 4	240	430	600	750		20 x 4	210	340	460	570
15 x 5	220	390	540	650		15 x 5	190	310	420	510
25 x 5	330	590	800	1000		25 x 5	280	470	600	750
32 x 5	410	700	1000	1250		32 x 5	350	580	750	950
40 x 5	500	850	1200	1500		40 x 5	420	700	900	1150
50 x 5	600	1050	1450	1850		50 x 5	510	850	1100	1400
63 x 5	700	1250	1800	2250		63 x 5	620	1000	1350	1700
80 x 5	900	1550	2200	2750		80 x 5	750	1250	1700	2100
100 x 5	1100	1900	2650	3350		100 x 5	900	1500	2050	2550
125 x 5	1300	2350	3250	4100		125 x 5	1100	1850	2500	3050
30 x 10	600	1050	1450	1800		30 x 10	490	800	1100	1350
50 x 10	850	1550	2150	2700		50 x 10	750	1200	1650	2050
60 x 10	1000	1800	2400	3150		60 x 10	850	1400	1900	2350
80 x 10	1300	2300	3200	4000		80 x 10	1100	1800	2450	3000
100 x 10	1550	2750	3850	4850		100 x 10	1350	2200	2950	3650
125 x 10	1900	3350	4650	5900		125 x 10	1600	2700	3600	4400
160 x 10	2350	4150	5800	7300		160 x 10	2000	3300	4450	5500

Guide de sélection et Spécifications Techniques Eurotherm

UNITÉ DE COMMANDE	TENSION D'ALIMENTATION	85 à 264 Vac			
UNITE DE COMMANDE	FRÉQUENCE D'ALIMENTATION	47 à 63 Hz			
	CONSOMMATION	120 W			
- BIR VALUE SHARE STANDARDS	LIMITES DE TEMPÉRATURE	0 à 50°C en fonctionnement, -25 à 70°C en stock			
DOM:	AFFICHAGE	Affichage matriciel à cristaux liquides - 4 lignes			
1000	COMMUNICATIONS	Modbus RTU 2 fils EIA485			
with:		Modbus TCP/IP 10baseT Ethernet			
(0)48		Profibus DPv1			
		Protocole DeviceNet			
		CC-Link			
(0.100.100.100.100.100.100.100.100.100.1		EtherNet/IP			
ARRY 1 400 F 400 F 500 F		ProfiNet			
\$1000 B \$1000 B \$1000 B \$1000 B	ENTRÉES ET SORTIES Standard	2 Entrées Analogiques			
		1 Sortie Analogique			
		2 Entrées/Sortie Numériques			
		2 Sorties Relais (1= Watchdog)			
	Modules optionnels (3 max.)	Par module -			
		1 Entrée Analogique			
		1 Sortie Analogique			
		2 Entrées Numériques			
		1 Relais			
	PRÉCISION DE LA MESURE	Meilleure que 1 %			
	AFFICHAGE DÉPORTÉ	Port dédié pour affichage déporté			
	ALUAYATA DE	Afficheur 32h8e			
	QUICKSTART	Configurable par code de commande ou à la mise en			
	CECTION PRÉDICTIVE	marche par le biais de l'afficheur dédié en façade			
	GESTION PRÉDICTIVE DES CHARGES (PLM)	Module optionnel raccordant jusqu'à 63 stations			
	DES CHARGES (PLM)	sur communication dédiée (type CAN). PLM configurable			
	OPTIONS LOCICIFILES	(optimise l'utilisation d'énergie) - Brevet déposé			
	OPTIONS LOGICIELLES	Load Tap Changer (Monophasée)			
	LIONIOLOGATIONIC	Compteur d'énergie			
	HOMOLOGATIONS	CE (EN 60947-4-3), UL 508, cUL 508			

	TEMPÉRATURE DE FONCTIONNEMENT	Nominale : 40°C, En fonctionnement : 0 à 50°C
PUISSANCE		déclassement appliqué au-delà de 40°C
/ III COLI/À 4\	VERSION VENTILLÉE	≥160 A
(JUSQU'À 4)	ALIMENTATION DU VENTILATEUR	115 V ou 230 V
	MODES DE CONDUCTION	Angle de phase
		Demi-période
Control of the second s		Train d'ondes
10 1 44 AV 44		Modulation fixe
Telephone		Logique
Fig. 1	TYPES DE CHARGES	Résistive Standard
		Résistive Complexe
The second second second second		Charges inductives par ex. Primaires de Transformateur
1 4 4 4 4	CONFIGURATION DE CHARGES	Monophasée Ph/Ph ou Ph/N
1 / 30 1 / 30 1 / 30 1 / 30 1		Contrôle 2 phases, en étoile 3 fils ou en triangle
- 1 COM 1 COM 1 COM 1 COM		Contrôle 3 phases, en étoile à 3 ou 4 fils, en triangle à 3
THE RESIDENCE OF STREET		ou 6 fils
	COMBINAISON DE MODULES DE PUISSANCE	1, 2, 3 ou 4 monophasés (1, 2, 3 ou 4 modules)
		1 ou 2 x contrôle 2 phases (2 ou 4 modules)
		1 x triphasé (3 modules)
	TYPES DE CONTRE-RÉACTION	Boucle ouverte
	THE DE CONTINE REPORTOR	V2
		12
		Puissance réelle
		Vrms
		Irms
MODULE DE PUISSANCE COMPACT	PLAGES DE TENSION	100 à 600 Vac, 100 à 690 Vac
	PLAGES DE COURANT en version compacte	100 A, 160 A, 250 A, 400 A, 500 A, 630 A
	Plage de courant nominal	16 à 630 A
	CONTRE-RÉACTION	Tension interne et courant
	CONTRE-REACTION	En option - Tension et courant externe
	HOMOLOGATIONS	CE (EN 60947-4-3), UL 508, cUL 508
	PLAGES DE TENSION	100 à 690 Vac
	PLAGES DE COURANT en version fort courant	100 a 070 vac
version forts courants	Refroidissement à air	800 A, 1000 A, 1300 A, 1700 A, 2000 A
	Refroidissement à eau	2000 A, 3000 A, 4000 A
	ALIMENTATION DES TURBINES	115 W ou 230 W
	CONTRE-RÉACTION	Tension et courant externe
	HOMOLOGATIONS	CE (EN 60947-4-3)
	HOWOLOGATIONS	CE (EIN 00747-4-3)

GRADATEUR EPOWER

Les options dont vous avez besoin...

Un simple module de contrôle peut prendre en charge jusqu'à quatre modules de puissance – d'où quatre boucles de régulation indépendantes. La plage de courant nominal des modules de puissance va de 100 A à 630 A en version compacte et jusqu'à 4000 A en version fort courant. Le module de contrôle lui-même prend en charge des cartes d'options vous offrant une flexibilité accrue pour votre solution :

Communication – Protocoles Modbus RTU (RS485), Profibus, DeviceNet®, Modbus TCP, CC-Link, ethernetIP et ProfiNet.

Gestion prédictive des charges (PLM) – Une fonction puissante vous permettant de gérer efficacement vos besoins en puissance pour plusieurs installations et de réaliser des économies d'énergie.

E/S flexibles – Le module contrôle prend en charge les Entrées/Sorties standards et jusqu'à trois cartes d'Entrées/Sorties supplémentaires avec entrées analogiques, sorties analogiques, Entrées/Sorties numériques et sorties de relais.

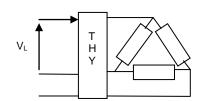
LTC – L'option Load Tap Changer permet la gestion des transformateurs à plots pour les applications monophasées uniquement, ce qui permet à la fois une réduction des harmoniques et l'amélioration du facteur de puissance.

Compteur d'énergie – Cette fonction permet aux clients de récupérer les valeurs des 5 compteurs d'énergie (un par phase et un global) par la comnunication ou pour l'affichage sur les pages utilisateurs.

Gestion prédictive de la charge.

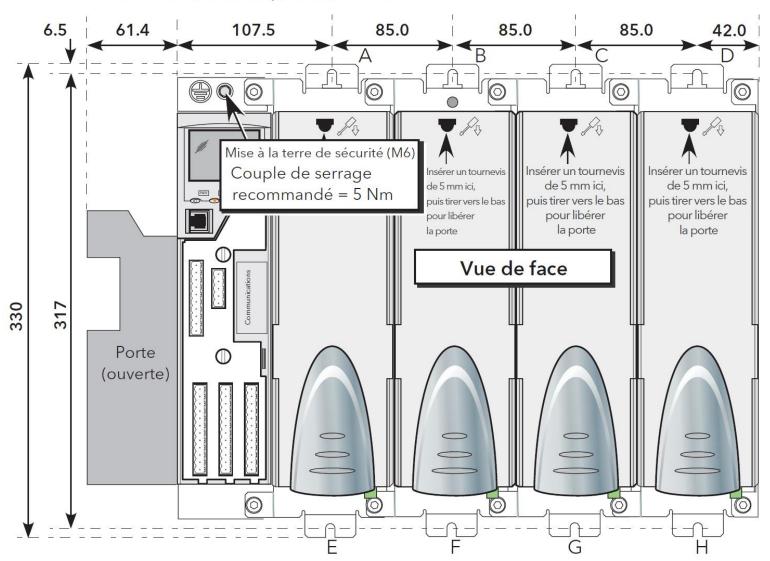
La fonction « gestion prédictive » offre une meilleure répartition de l'énergie dans les différents fours, en gérant les priorités et, le cas échéant, le délestage des charges.

Les gradateurs EPower empêchent le dépassement de la puissance nominale afin de rester dans les limites du contrat de fourniture d'électricité.


La Gestion prédictive des charges d'Eurotherm anticipe la consommation d'énergie plutôt que de réagir lorsque l'on a déjà dépassé la crête tarifaire.

Calculs de courant des Gradateurs

La formule ci-dessous offre un moyen simple de calculer le courant des thyristors pour diverses charges résistives (I_T). La valeur calculée de I_T doit alors être multipliée par 1,2 pour prévoir les variations de tension d'alimentation et les tolérances de fabrication de la charge.


Thyristor current (I_T) = Watts / $(1.732 \times V_1)$

Example : A 60 kW load across 415 V, 3 phase supply $I_T = 60\ 000\ /\ (1.732\ x\ 415) = 83\ A$ Applying safety factor, current = 83 x 1.2 = 100 A, 415 volt three phase thyristor can be used.

Conditions de montage des gradateurs Epower

Largeurs hors tout							
No. de phases	1	2	3	4			
Porte fermée	149.5	234.5	319.5	404.5			
Porte ouverte	211.0	296.0	381.0	4660			

Equerre supérieure		Equerre inférieure
2 phases	Utiliser A et B	Utiliser E et F
3 phases Utiliser A, B et C		Utiliser E, F et G
4 phases	Utiliser A, B, C et D	Utiliser E, F, G et H

CONCOURS GENERAL DES METIERS	Bac Pro ELEEC	Session 2014	Page DT20 sur DT27
------------------------------	---------------	--------------	--------------------

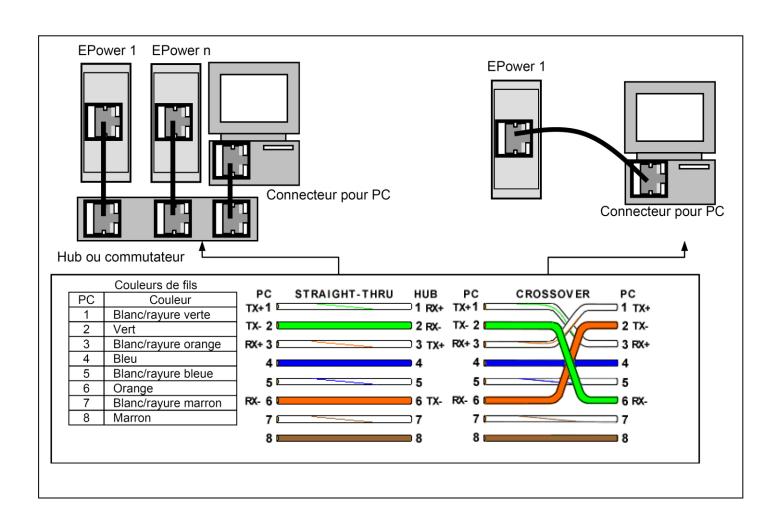
Ethernet.

Les gradateurs EPower sont reliés ensemble par des connecteurs RJ45. Le câble d'interconnexion doit être muni de connecteurs à enveloppe extérieure métallique ajoutée au blindage du câble (le corps métallique est serti sur le blindage de fil).

CABLAGE ETHERNET/IP

La capacité Ethernet/IP est assurée par une carte d'interface installée dans le gradateur et fournit un connecteur RJ45 simple (section 2.1.5).

Le port EtherNet/IP est un port 10/100 Mbits, pour mode intégral ou semi-duplex et doit être raccordé au moyen d'un interrupteur industriel avec câble Cat5e (traversant) à un dispositif maître (par ex. automate) au moyen du

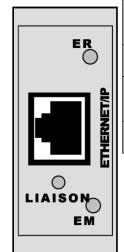

connecteur RJ45 standard (longueur maxi 100 m).

Les connecteurs des câbles d'interconnexion doivent être munis d'une enveloppe extérieure métallique raccordée au blindage des fils du câble. Ce type de câble doit être utilisé pour maintenir la conformité CEM.

SELECTION DU CABLE POUR LE RESEAU DE COMMUNICATION NUMERIQUE

• Pour des applications dans un environnement dans lequel des niveaux élevés de bruit électrique sont susceptibles d'être présents (Industrie), utiliser des câbles à paires torsadées avec blindage en feuille d'aluminium plus un blindage tressé en cuivre.

Schéma de câblage Ethernet/IP - Gradateurs EPower multiples


Indicateur d'état communication.

MANUEL DE COMMUNICATION NUMERIQUE EPOWER

2.1.5 EtherNet/IP

LED d'indication d'état						
	Une séquence de tes	ts es	st effectuée sur c	es L	ED lors du déma	
EM	LED d'état du module				ER	LED o
Eteinte	Pas d'alimentation				Eteinte	Pas d d'adre
Vert	Contrôlé par scanner dans l'état Exécution		ER		Vert	En lig conne (Class
Clignotement en vert	Pas configuré ou scanner dans l'état Repos				Clignotement en vert	En lig
Rouge	Défaut majeur (état EXCEPTION, erreur FATALE, etc.)			# 1 F	Rouge	Doubl FATA
Clignotement en rouge	Défaut(s) récupérable(s)				Clignotement en rouge	Fin te conne

LED d'indication d'état				
LIAISON	LED liaison/activité			
Eteinte	Pas de liaison, pas d'activité			
Vert	Liaison établie			
Clignotement en vert	Activité			

ER	LED d'état du réseau
Eteinte	Pas d'alimentation ou pas d'adresse IP
Vert	En ligne, une ou plusieurs connexions établies (Classe CIP 1 ou 3)
Clignotement en vert	En ligne pas de connexion établie
Rouge	Double Adresse IP, erreur FATALE
Clignotement en rouge	Fin tempo d'une ou plusieurs connexions (Classe CIP 1 ou 3)

Figure 2-5: Brochage EtherNetl/P

6.6 MENU COMMS

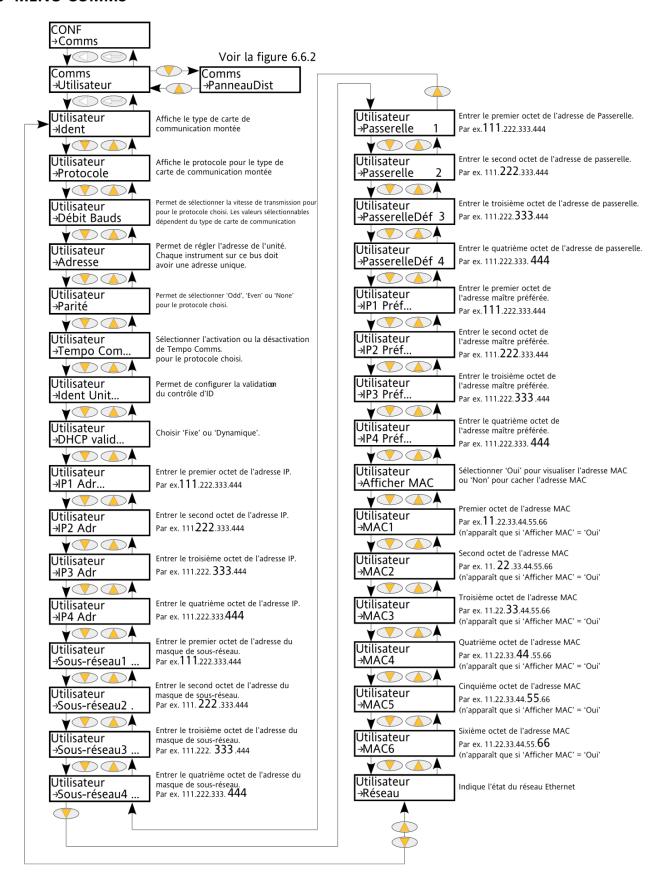
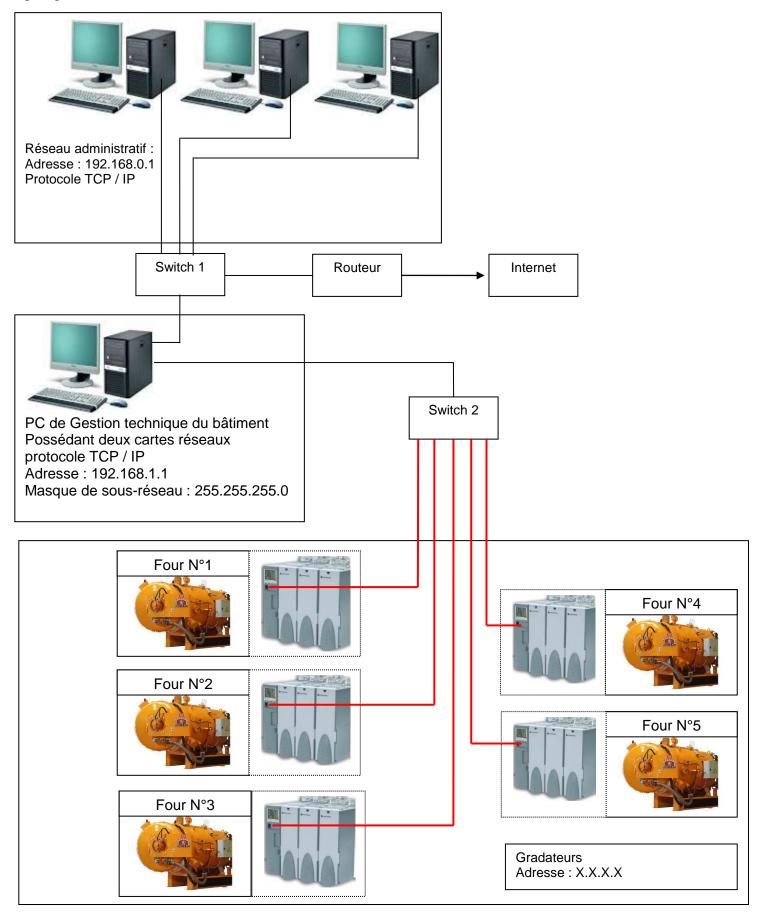



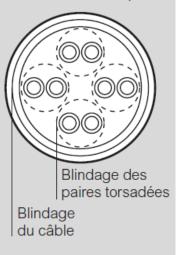
Figure 6.6 Menu Utilisateur Communications

HA179769 Edition 1 Déc. 07

Topologie du réseau Ethernet.

Elément	Valeur
Pc Supervision GTB	192.168.1.1
Gradateur EPower four N°1	192.168.1.2

CONCOURS GENERAL DES METIERS	Bac Pro ELEEC	Session 2014	Page DT24 sur DT27
------------------------------	---------------	--------------	--------------------

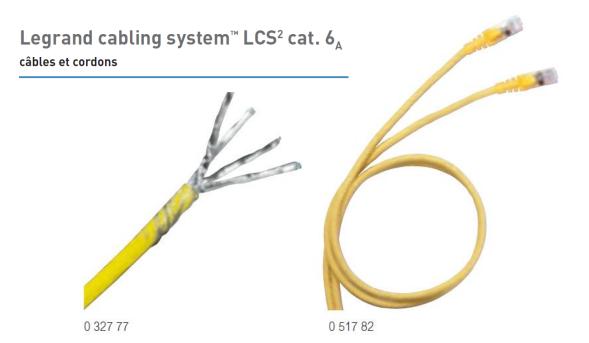

Principales caractéristiques des systèmes LCS²

	LCS ² 6 _A		LCS ² 6		LCS ² 5e
Fréquence	500 Mhz		250 Mhz		100 Mhz
Débit	10 G	bit/s	1 Gbit/s		1 Gbit/s
Câblage	Cuivre	FO	Cuivre	FO	Cuivre
Connecteurs	RJ 45	SC-LC	RJ 45	SC-LC	RJ 45
Long. câble maxi.	100 m	variable	100 m	variable	100 m

Nouvelles dénominations des câbles LAN (selon ISO 11801-2)

Elles correspondent à : "type de blindage du câble"/ "type de blindage des paires torsadées" suivi de TP (pour paires torsadées)

Type de câble		Dlindaga	Blindage
ancienne appellation	nouvelle appellation	Blindage du câble	des paires torsadées
SSTP	S/FTP	S : écran constitué d'une tresse cuivre	F : écran formé d'un ruban alu/ polyester
SFTP	SF/UTP	SF : association ruban + tresse	U : aucun écran
STP	U/FTP	U : aucun écran	F : écran formé d'un ruban alu/polyester
FTP	F/UTP	F : écran formé d'un ruban alu/polyester	U : aucun écran
UTP	U/UTP	U : aucun écran	U : aucun écran



Performances lors d'une installation avec boîte de distribution de zone (point de consolidation)

Longueurs maximales recommandées des liens garantissant les performances des systèmes avec l'utilisation de prises RJ 45 traversées cuivre et/ou de prises RJ 45

	Long. a		
	Cordons	Câbles	Liens
	8	70	78
Cat. 6 _A	15	66	75
	20	55	75
	8	70	78
Cat. 6	15	60	75
	20	55	75
	8	75	83
Cat. 5e	15	65	80
	20	60	80

Il est recommandé d'opter pour les longueurs de câbles les plus courtes afin de disposer de plus de flexibilité au niveau de la longueur des cordons en cas de reconfiguration

Emb.	Réf.	Câbles pour réseaux locaux cat. 6₄
		Câbles 4 paires torsadées 100 ohms Gaine LSOH: sans halogène Code couleur EIA/TIA Conformes aux normes ISO/IEC 11801 éd. 2.0 (2011), EN 50173-1 et EIA/TIA 568 C2
500	0 327 78	F/UTP - 4 paires Performance 500 MHz Long. 500 m Livré sur touret. Poids 29,2 kg
500	0 328 78	F/UTP - 2 x 4 paires Performance 500 MHz Long. 500 m Livré sur touret. Poids 58 kg
500	0 327 77	S/FTP - 4 paires Performance 600 MHz Long. 500 m Livré sur touret. Poids 33 kg
		Cordons de brassage et utilisateurs RJ 45 cat. 6 _A
		RJ 45 - RJ 45 droit Conformes aux normes ISO/IEC 11801 éd. 2.0 (2011), EN 50173-1 et EIA/TIA 568 C2
5 5 5 5	PVC 0 517 80 0 517 81 0 517 82 0 517 83	S/FTP blindé impédance 100 Ω Long. 1 m Long. 2 m Long. 3 m Long. 5 m
1 1 1	Red Green RAL 3020 RAL 6026 0 518 70 0 518 66 0 518 71 0 518 67 0 518 72 0 518 68 0 518 73 0 518 69	Long. 1 m Long. 2 m Long. 3 m

Présentation Transport / Production de l'électricité

Le groupe Electricité de France (EDF) est la principale entreprise de production, de transport et de fourniture d'électricité en France.

Production nucléaire: EDF est le 1^{er} exploitant nucléaire au monde, avec une puissance installée de 74,8 GW à fin 2011. Il exploite en France un parc de 58 réacteurs (puissance installée de 63,1 GW).

EPR : 1^{er} réacteur nucléaire nouvelle génération

Le transport : gérés par RTE, les réseaux de transport acheminent l'électricité des centrales d'EDF vers les grandes zones de consommation, les agglomérations et les grandes entreprises. Ils sont constitués de 100 000 km de lignes électriques à haute tension et à très haute tension, entre 50 000 volts et 400 000 volts.

La distribution: gérés par ERDF, les réseaux de distribution reçoivent l'électricité des réseaux de transport et la distribuent aux consommateurs et aux petites entreprises. Leurs lignes sont à moyenne tension (MT) et à basse tension (BT), entre 230 volts et 20 000 volts. En France, ils sont constitués de 612 000 km de lignes MT (ou «lignes HTA») et 692 000 km de lignes BT (5 % de l'énergie est toutefois acheminée par des distributeurs locaux dans les mêmes conditions techniques).

EDF Energie nouvelles

Le gouvernement a attribué au consortium initié par EDF Energies Nouvelles, avec Alstom comme fournisseur exclusif d'éoliennes, la construction de trois parcs éoliens en mer : Fécamp, Courseulles-sur-Mer, Saint-Nazaire. Dans le cadre de ces projets, Alstom a décidé de créer quatre usines dont deux à Cherbourg pour la construction des pales et des mâts des éoliennes.

Cet appel d'offres avait pour **objectif de franchir une première étape vers l'objectif de 6 000 MW d'éolien en mer et d'énergies marines à horizon 2020, inscrit dans le Grenelle Environnement**. Cette capacité de production représente environ 1000 à 1200 éoliennes, qui fourniront l'équivalent de la consommation annuelle de 4,5 millions de foyers.

Une de ces zones est située au large des côtes de la Basse-Normandie au droit de **Courseulles-sur-Mer** (*Calvados*).

Hydrolien

L'hydrolien maritime peut se développer sur des zones de fort courant. La Basse-Normandie est particulièrement favorisée avec des sites majeurs de fort courant dans la Manche notamment dans le raz Blanchard.