

Faire avancer la sûreté nucléaire

Mesurer la radioactivité avec des outils connectés : est-ce un projet pédagogique envisageable ?

Jean-François BOTTOLLIER-DEPOIS

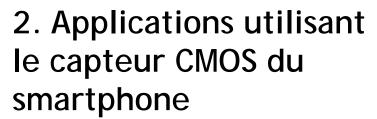
Réunion Iffo-RME du 22 mai 2014

Sommaire

- Contexte
- Fiabilité des applications et des données
- Vers un projet de science collaborative...

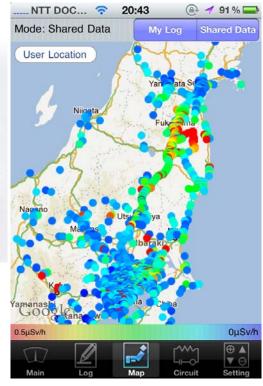
Faire avancer la sûreté nucléaire

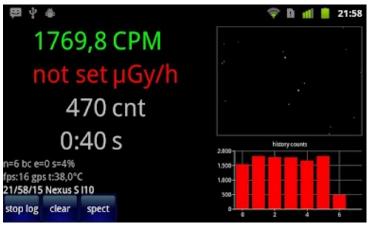
Le contexte


Le contexte

- Après Fukushima, on assiste à un développement très rapide de différentes applications « grand public » pour réaliser des <u>mesures géolocalisées</u> <u>de la radioactivité sur le terrain</u>, permettant en particulier d'établir des <u>cartographies de débit de</u> <u>dose</u>
- L'utilisation de ces outils au Japon permet de faire un premier retour d'expérience

Contexte


Exemples


1. Carte dressée par la communauté « radiation watch » avec des « pocket geiger » sur smartphone

Exemples (suite)

3. Travaux réalisés par la communauté « Safecast » avec un système basé sur un Geigersure Müller géolocalisé (14,147)

13054 2013/0 Des mesures

13053 2013/07/07 07:05 +0000 Shigeru Kawaguchi

Montgomery County MD USA - Shigeru

7,057

19.658

KAWAGUCHI

OVER 46 COUNTRIES!

Des ateliers pour faire des appareils dont les mesures sont reportés très facilement sur des cartes

L'intérêt pour ces communautés

- Un smartphone et des applications téléchargeables sont des outils nouveaux changeant la donne en matière de communication et de permettant la mise à disposition du public de mesures environnementales de la radioactivité
- Chacun peut devenir acteur de sa dosimétrie en cas de crise : <u>usage personnel</u>
- Le public, par les données qu'il transmet, devient un acteur d'information et un partenaire de gestion en cas de crise : <u>usage collectif</u>

De façon plus générale, les organismes de recherche s'appuient de plus en plus sur des données citoyennes

En pratique

Données incontournables présentes en masse via internet, en particulier en cas de crise

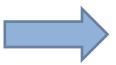
- Données provenant du terrain « en temps réel »
- Opportunité pour la gestion de la crise et la communication avec le public
- Bonnées en masse avec un niveau de fiabilité très variable
- Sollicitation importante du public à prévoir

Intérêt pour la gestion de crise et la communication avec le public

- S'approprier et fiabiliser les données
- Avoir une expertise sur ces données
- Anticiper la communication sur ces données en cas de crise

Faire avancer la sûreté nucléaire


Fiabilité des applications et des données


Performances des applications disponibles sur smartphone

Des applications grand public, sans équipement particulier, à des moyens de mesures connectables

de qualité professionnels

- Caméras CMOS des smartphones avec traitement des signaux pixélisés créés par les RI
- Simple détecteur semi-conducteur connecté (audio)
- Radiamètre de type professionnel (GM...) connecté (bluetooth, USB)

Une grande diversité des applications en forte évolution

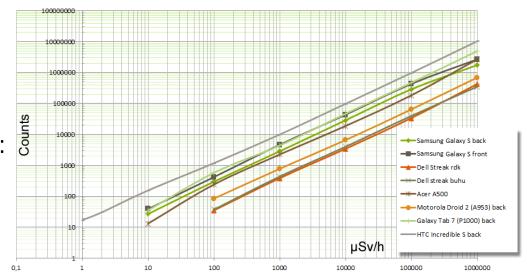
Applications disponibles sur smartphone Caméras CMOS des smartphones

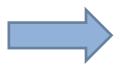
- Utilisation du capteur CMOS parfaitement obturé
- En fonction du modèle de téléphone, capacité à détecter des débits de dose proche du bruit de fond naturel (intégration de quelques heures)
- 21:58

 1769,8 CPM

 not set μGy/h

 470 cnt

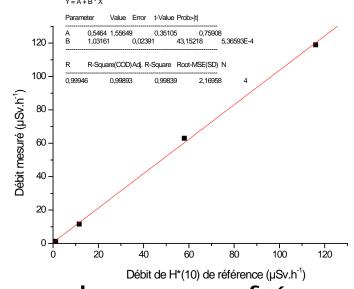

 0:40 s


 150 to 6 gps 1:38,0°C

 21/58/15 Nexus S 110

 stop log clear spect

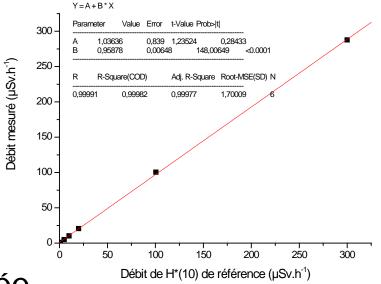
- Variabilité de la réponse des détecteurs CMOS entre les différents modèles
- Fiabilité incertaine du capteur : sensibilité à la température, CEM...



Niveau de fiabilité incertain Intéressant pour des mesures occasionnelles

Applications disponibles sur smartphone Détecteur « simple » connecté

- Peu onéreux (~ 50 €) et mesure du bdF naturel en 10 minutes au plus
- Détecteur connecté sur la base d'un Geiger-Müller ou d'une photodiode
- Application évolutive : amélioration des performances, de l'ergonomie...
- Exemple déployé au Japon : détecteur *Pocket Geiger* réalisé à base de photodiodes connectées via la prise microphone d'un iPhone



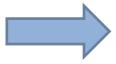
Niveau de fiabilité acceptable Peut être utilisé par le public pour des mesures fréquentes

Applications disponibles sur smartphone Radiamètre de type professionnel

- Appareils de quelques centaines d'euros et mesure du BdF naturel en quelques secondes
- Meilleure sensibilité/réponse en énergie et stabilité de fonctionnement
- Exemple : BlueGeiger associé à son compteur Geiger Müller (Kindenoo)

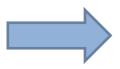
Fiabilité élevée, mais difficilement

mais difficilement envisageable pour le grand public


Type de données disponibles

Différents types de données avec des niveaux de fiabilité très variables en fonction de leur provenance

- Public, sans information sur l'origine
- Public, avec matériel/application connues et sans maitrise de la mesure
- Public, avec matériel/application connues et maitrise de la mesure
- Professionnels avec dosimètre géo-localisé et connecté



Une grande diversité des applications en forte évolution

Fiabilisation des données

Les données devront être fiabilisées en fonction de leur type

- Par connaissance au préalable des applications utilisées
- Par élimination/sélection dans les données « peu fiables » en les recalant par rapport à des données plus sûres ou fiabilisées (réseau Teleray, professionnels, réseau utilisateurs...)
- Par utilisation méthodes statistiques : étude des distributions dans l'espace et le temps, recherche de cluster...

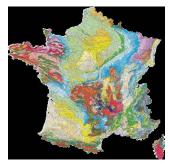
La fiabilisation doit être faite en toute transparence vis-à-vis des utilisateurs

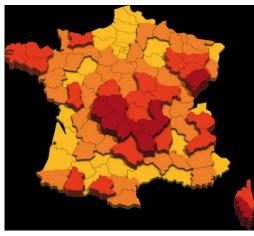
Faire avancer la sûreté nucléaire

Vers un projet de science collaborative...

Enjeux pour la gestion de crise

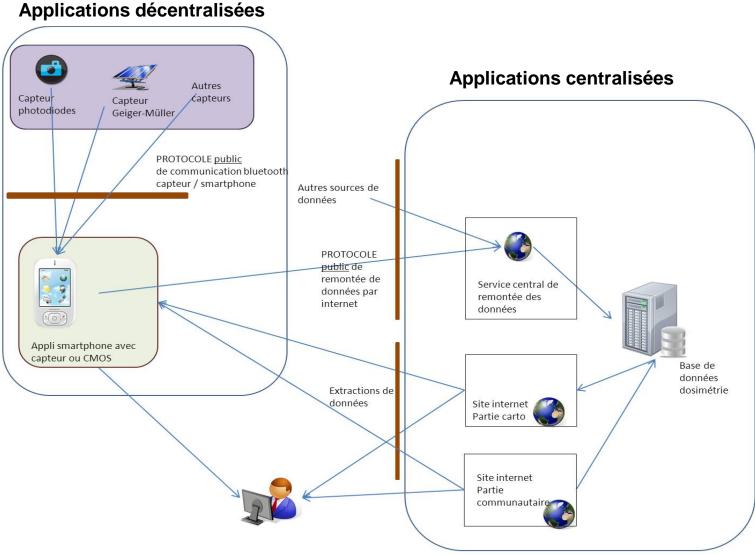
- Rendre le <u>public acteur</u> en cas de crise
- Disposer d'un <u>nouveau réseau</u>/source de données pour la gestion de la crise, utile en particulier pour la phase alerte et précoce
- Mettre au point un système de collecte et d'échange en « temps de paix » pour qu'il puisse fonctionner de façon satisfaisante en crise


Opportunité pour un projet de sciences citoyennes


- Nouveau <u>vecteur d'échange</u> avec le public
- Mise en place d'une démarche de <u>sciences</u> collaboratives et citoyennes
- Intérêt pour de <u>nouveaux partenaires et</u> réseaux

Quels intérêts en pratique?

- Le public ne connait pas bien la radioactivité et le niveau de bruit de fond naturel : ~1 millisievert par an en moyenne, plus dans certains départements
- La géologie de la France est très contrasté, le bruit de fond diffère d'un département à l'autre :
 - Des mesures faites et partagées par le public pourraient être intéressantes pour une meilleure appréhension de cette radioactivité naturelle
- Rôle éducatif, en particulier pour les jeunes
 - Prise de mesures
 - Mise en commun avec des outils internet
 - Fabrication d'appareils à partir d'éléments en kit
 - Projet transdisciplinaire : physique, SVT, géographie
 - Projet collectif dans les classes



Architecture fonctionnelle

En développement avec l'UPMC

Les attentes pour le projet d'un partenaire comme l'Iffo-RME

- Contribution à la <u>définition de la démarche pédagogique</u>, en particulier avec le milieu scolaire, et aux fonctionnalités associées du futur site
- Contribution active à la phase de tests du projet

•