EPREUVE E2 : Etude d'un ouvrage

SESSION 2010

Cette épreuve comporte :

Le sujet « tronc commun », composé par tous les candidats Le sujet « Approfondissement du champ application Industriel » Le sujet « Approfondissement du champ Habitat-Tertiaire »

Le candidat doit remplir le tableau ci-dessous correspondant au sujet « approfondissement » qu'il a choisi.

A remplir par le candidat
Je choisis l'approfondissement champ d'application :
Compléter par la mention : habitat-tertiare ou industriel

<u>ATTENTION</u>: Dans tous les cas, ne sera corrigé et noté que le seul sujet approfondissement du champ d'application choisi par le candidat.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 EEE EQ)	SUJET	Durée : 5 heures	Page 1 sur 24
⊏preuve . ⊏z	(1006-EEE EO)	303E1	Coefficient : 5	raye i sui 24

Contenu du sujet

Tronc commun

Partie A : Distribution électrique	Notation	/35	Temps conseillé	1h 30mn
Partie B : Alimentation de l'aérocondenseur	Notation	/16	Temps conseillé	1h
Partie C : Mesure de température	Notation	/19	Temps conseillé	1h
Total tronc commun	Notation	/70	Temps conseillé	3h 30mn

Champ d'application Habitat-Tertiaire

Partie D : Alarme incendie	Notation	/13	Temps conseillé	45mn
Partie E : Éclairage de sécurité	Notation	/17	Temps conseillé	45mn
Total champ d'application habitat-tertiaire	Notation	/30	Temps conseillé	1h 30mn

Champ d'application Industriel

Partie F : Motorisation du grappin	Notation	/21	Temps conseillé	1h
Partie G : Choix matériel pour la supervision	Notation	/09	Temps conseillé	30mn
Total champ d'application industriel	Notation	/30	Temps conseillé	1h 30mn

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants					
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 2 sur 24	
Epieuve . Ez	(1006-EEE EO)	SUJET	Coefficient : 5	raye 2 Sul 24	

Usine d'incinération

L'étude portera sur le support technique d'une usine d'incinération décrit dans la documentation technique DT3 à DT7.

Objet de cette étude :

TRONC COMMUN

Partie A:

L'usine d'incinération étant située dans une zone touristique proche du littoral, la saison estivale apporte un surcroît de déchets ménagers qui ne peuvent être incinérés dans leur totalité durant cette période. A l'opposé, on constate que le rendement de l'usine baisse fortement durant la période hivernale par manque de matière d'œuvre. La solution validée pour remédier à ce problème sera d'investir dans une presse de compactage afin de stocker au mieux des ballots de déchets dans des hangars fermés.

En vue de cette nouvelle évolution, l'entreprise souhaite vérifier la compatibilité du groupe électrogène actuel.

- Effectuer un bilan de puissance de l'installation en tenant compte du nouvel équipement.
- Vérifier la solution existante pour secourir l'usine

Partie B:

Afin d'optimiser l'énergie consommée par l'aérocondenseur on vous demande d'effectuer une étude en intégrant un variateur de vitesse :

- Dimensionner le variateur qui commande l'aérocondenseur
- Établir le schéma de raccordement du variateur
- Dimensionner le câble d'alimentation de l'aérocondenseur à l'armoire de commande.

Partie C:

On souhaite changer de technologie de transmetteur afin de faciliter les interventions de maintenances. On vous demande de :

- Choisir les transmetteurs
- Établir le schéma de raccordement
- Proposer une modification de programme.

CHAMP D'APPLICATION HABITAT-TERTIAIRE

Partie D:

Le chef d'établissement désire améliorer la sécurité incendie :

- Choix et implantation de trois détecteurs supplémentaires
- Installation d'une console de report d'information.

Partie E:

Dans le cadre de l'amélioration de l'éclairage de sécurité, on vous demande :

- Réaliser le schéma de raccordement de la centrale
- Choisir l'éclairage d'un local sensible.

CHAMP D'APPLICATION INDUSTRIEL

Partie F:

La direction de l'usine d'incinération envisage d'investir dans un grappin de capacité supérieure pour augmenter le rendement du four. Il sera donc nécessaire de :

- Redimensionner le moto-variateur de levage du grappin.

Partie G:

La maintenance des API devenant de plus en plus difficile, le choix d'une nouvelle génération d'API s'est porté sur des TSX 57. De ce fait, on se propose d'étudier la communication de ces API avec la supervision :

- Déterminer le câble de communication à utiliser.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Dago 3 cur 24
Epieuve . EZ	(1006-EEE EO)	SUJET	Coefficient : 5	Page 3 sur 24

EPREUVE E2 : Etude d'un ouvrage

SESSION 2010

Sujet: tronc commun

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 4 cur 24
⊏preuve . ⊏z	(1006-EEE EO)	SUJET	Coefficient : 5	Page 4 sur 24

Partie A: Distribution électrique

Le client souhaite se renseigner sur la compatibilité de son groupe électrogène avec les nouvelles contraintes techniques. On vous demande de définir le réseau actuellement disponible et d'indiquer sa compatibilité ou non aux nouvelles données (DT9 à DT13).

A1 Poste de transformation :

		éseau EDF			1.			
1.2 :				•••••				
Donner la signification of	QM	200	e PS3.	20				
		<u> </u>						
2 Schéma de liaison : 2.1 : Identifier le type de sch		à la terre n	nis en pla	ice.				
2.2 : Donner les avantages e	t les inconvénio	ents de ce t	ype de Sl	LT.		 	 	
	t les inconvénio	ents de ce t	ype de SI	LT.		 	 	
	t les inconvéni	ents de ce t	ype de SI	LT.		 		
	t les inconvénio	ents de ce t	ype de SI	LT.				
2.2 : Donner les avantages et	t les inconvéni	ents de ce t	ype de SI	LT.				

Baccalaur	éat Professionn	nel Électrotechnique-	Énergie et Équipements C	communicants
Épreuve : E2	(1006-EEE EO)	SUJET	Durée : 5 heures	Page 5 sur 24
Epieuve . Ez	(1000-EEE EO)	303E1	Coefficient : 5	rage 5 Sui 24

1	Désignation :		
Définition :			
A 3.2 : Effectuer le couplage d HTA	de la plaque a bornes du trans i i i i i i i i i i i i i		rage de la distribution HT/BT.
donner les différents points	de surveillance de ce dispos	itif.	otégé par un bloc relais DGPT2

A 3.3 : Sachant que le transformateur T1, immergé étanche à remplissage total, est protégé par un bloc relais DGPT2, donner les différents points de surveillance de ce dispositif.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 6 sur 24
Epieuve . Ez	(1006-EEE EO)	SUJET	Coefficient : 5	Page 0 Sul 24

A4 Le groupe de secours :

Considérant que le groupe secours doit satisfaire l'alimentation en énergie de 65 % de la puissance apparente absorbée par l'usine, vérifier si le groupe installé est adapté en tenant compte du nouveau départ d'alimentation de la presse.

<u>A 4.1 :</u>				
Réaliser un	bilan de la puis	sance consommée	par l'ensemble	de l'usine

Total	

<u>A 4</u>	.2 : Déterminer la puissance apparente totale consommée pour un cos φ de 0,93 et un coefficient de simultanéité de 0,7
••••	
<u>A 4</u>	Le transformateur est-il compatible avec les modifications de production ? Justifier votre réponse. OUI NON
	Si non choisir le nouveau transformateur :

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Éprouvo : E2	(4000 FFF FO)	SUJET	Durée : 5 heures	Dogo 7 our 24
Epreuve : E2	(1006-EEE EO)	SUJET	Coefficient : 5	Page 7 sur 24

nentation sans interruption (ctuer le choix d'une alimenta ASI).		
_			
<u>.5 :</u>			
Sachant que 35 % de la p		formateur T1 n'est pas	secourue par le groupe électro
uler la puissance apparente	à secourir.		
.6 : Le groupe électrogène inst	allé convient-il ?		
<u>.6 :</u> Le groupe électrogène inst	allé convient-il ?		
<u>.6 :</u> Le groupe électrogène inst	allé convient-il ?	non	
		non	
Le groupe électrogène inst		non	
		non	

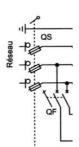
Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 EEE EQ)	SUJET	Durée : 5 heures	Dago 9 cur 24
Epieuve . Ez	(1006-EEE EO)	SUJET	Coefficient : 5	Page 8 sur 24

Partie B : Dimensionnement de l'alimentation de l'aérocondenseur :

Afin d'optimiser la ventilation de l'aérocondenseur qui permet la condensation de la vapeur en eau par une adaptation de la vitesse, on souhaite remplacer le démarrage étoile triangle par un variateur de vitesse. Profitant de cette modification, l'armoire de commande va être installée dans le local technique distant de l'aérocondenseur de 50m (DT12, DT14 à DT19).

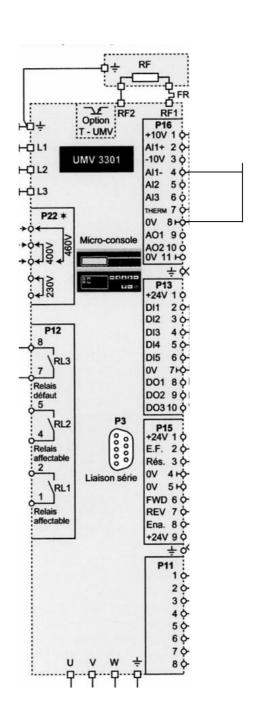
B1 Choix du variateur :

B 1.1 : Choisir le variateur de vitesse adapté, la fréquence de découpage étant fixée entre 1,7 et 2,5 kHz.	
	• • • • • • • • • • • • • • • • • • • •


B 1.2:

Compléter le schéma de câblage du variateur de vitesse page suivante.

On désire l'utilisation:


- > d'un bouton poussoir S1 pour la mise sous tension du variateur.
- d'un bouton poussoir S2 pour la mise hors tension du variateur.
- > la mise en marche avant automatique du ventilateur à la mise sous tension.
- d'un bouton poussoir S3 pour l'acquittement de défaut.
- > une vitesse réglable par potentiomètre.
- > possibilité d'utiliser 3 vitesses prédéfinies en utilisant 1 commutateur S4 à 4 positions et 2 contacts.
- bouton d'arrêt d'urgence SAU.
- > sans options.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 EEE EQ)	SUJET	Durée : 5 heures	Page 9 sur 24
Epieuve . Ez	(1006-EEE EO)	SUJET	Coefficient : 5	raye 9 Sul 24

Alimentation commande

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 10 cur 24
Epieuve . Ez	(1006-EEE EO)	30321	Coefficient : 5	Page 10 sur 24

B2 Choix du câble :

B 2.1:

Déterminer la section du câble variateur-aérocondenseur sachant que ce câble en aluminium ayant une isolation en polyéthylène réticulé sera installé seul dans un chemin de câble blindé non perforé d'une distance de 50m et que la température pourra atteindre 60°C. Ce chemin de câble n'est pas posé en plafond.

Le variateur a une fréquence de hachage comprise entre 1,7et 2,5 kHz.

	1
Intensité nominale moteur	
Courant admissible dans la	
canalisation (sortie variateur)	
Lettre de sélection	
Facteur de correction K1	
Facteur de correction K2	
Facteur de correction K3	
Coefficient K	
Intensité fictive	
Section des conducteurs	
de tension générée par ce câble.	

<u>B 2.2 :</u> Calculer la chute de tension générée par ce câble.
<u>B 2.3 :</u>
Cette chute de tension est elle conforme aux préconisations de la norme sachant que l'entreprise a souscrit un tarif vert pour l'achat de l'électricité, sachant que la chute de tension en amont du variateur est de 3 %.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 EEE EQ)	SUJET	Durée : 5 heures	Page 11 cur 24
Epieuve . Ez	(1006-EEE EO)	SUJET	Coefficient : 5	Page 11 sur 24

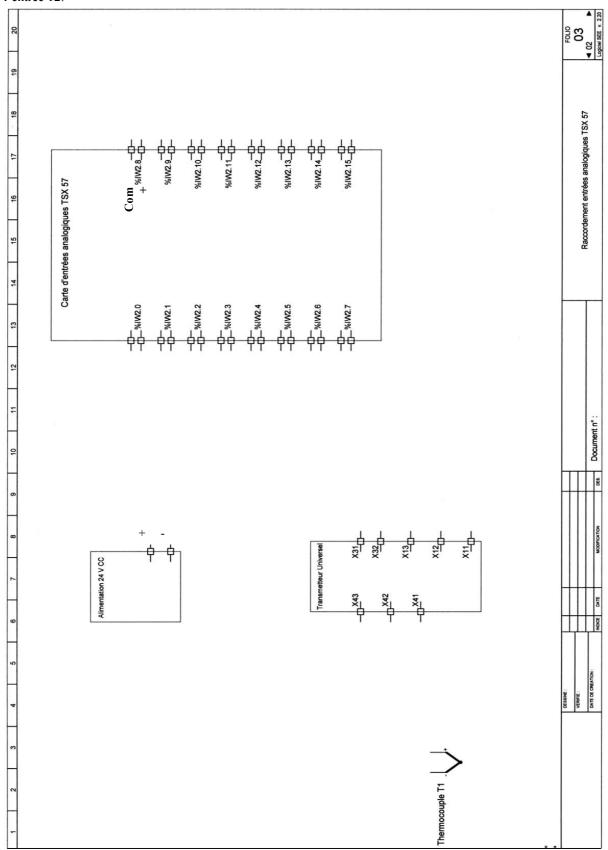
Partie C : Mesure de température

C1 Choix des capteurs et des transmetteurs :

Des transmetteurs avec lecture directe de la mesure sont proposés en vue du remplacement des anciens modèles pour permettre aux techniciens de maintenance de contrôler plus rapidement le bon fonctionnement des capteurs. (DT5, DT20 à DT25)

<u>C 1.1:</u>

D'après les contraintes d'exploitation définis sur la DT5, choisir les capteurs suivants. La plage d'utilisation doit être la plus réduite possible. Justifier vos réponses.

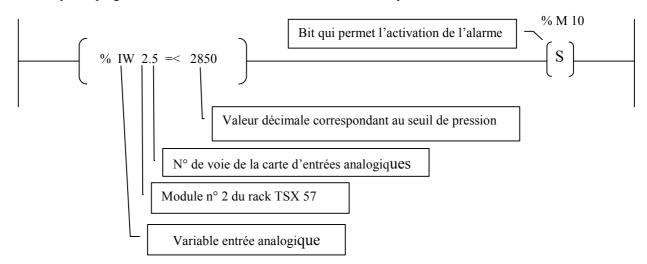

Type de capteur	Justification de votre choix	Précision de base
T1:		≤ ± 1°C
T2:		≤ ± 1°C
Т3:		≤ ± 0,2°C

<u>C 1.2 :</u>
Effectuer le choix du transmetteur pour ces capteurs sachant que pour des soucis de maintenance on vous demande
un modèle identique de transmetteur pour les mesures de températures et une information de sortie en 4-20mA.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants					
Épreuve : E2	(1006 EEE EQ)	SUJET	Durée : 5 heures	Page 12 sur 24	
⊏preuve . ⊏z	(1006-EEE EO)	SUJET	Coefficient : 5	Page 12 Sul 24	

C2 Choix et raccordement d'interface API :

<u>C 2.1 :</u>
Compléter le schéma électrique du capteur T1 jusqu'à l'automate sachant que la température est gérée par l'entrée 12.



Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants					
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 13 sur 24	
Epieuve . Ez	(1006-EEE EO)	303E1	Coefficient : 5	raye 13 Sul 24	

C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C Calculs: Baccalauréat Professione Épreuve: E2 (1006-EEE EO)	sure, calculer la valentenant compte de l	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA 20 mA	Valeur numérique 0 10 000	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C Calculs:	sure, calculer la valentenant compte de l	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA 20 mA	Valeur numérique 0 10 000	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C Alarme haute 1000°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3: D'après la précision de mes température en sortie du four en analogique: Température 800°C 1150°C Alarme basse 900°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3 : D'après la précision de mes température en sortie du four en analogique: Température 800°C	sure, calculer la vale n tenant compte de l Sortie	ur décimale qui fixe les 'étendue de mesure et de transmetteur 4 mA	u paramétrage de la carte d'entre Valeur numérique 0	
C 3.3 : D'après la précision de mes température en sortie du four en analogique: Température	sure, calculer la vale	ur décimale qui fixe les 'étendue de mesure et d	u paramétrage de la carte d'entre Valeur numérique	
C 3.3 : D'après la précision de mes température en sortie du four en analogique:	sure, calculer la vale	ur décimale qui fixe les 'étendue de mesure et d	u paramétrage de la carte d'entr	
C 3.3 : D'après la précision de mes	sure, calculer la vale	ur décimale qui fixe les		
<u>C 3.3 :</u>				
Le transmetteur dégrade t-il le	e signal, justifier votre			
Le transmetteur dégrade t-il le	e signal, justifier votre			••••
Le transmetteur dégrade t-il le	e signal, justifier votre	repense .		
Le transmetteur dégrade t-il le	e signal, justifier votre	repense :		
		réponse ?		
Précision de mesure :				••••
mesure). Ecart de température :				
Calculer la précision de la m			e analogique (degrés par échelon	de
La mise à l'échelle du transme Le nombre de pas utilisé sur le			re de 800°C à 1150°C.	
<u>C3.2 :</u>				
				••••
				••••
	-			
Calculer le nombre de combin	naisons maximal pour	le CAN choisi :		
				••••
				••••
Sur complete de tits s effectue	le codage du CAIN!			
C 3.1 : Sur combien de bits s'effectue	a la codoga du CAN 9			
C3 Traitement des données	numeriques :			
C3 Traitement des dennées	าบทุงค่อมจร			
				••••
commun.				
nom de l'interface, sa fonction p			és par un automate TSX 57, donner des entrées haut niveau avec po	

C3.4:

Exemple de programmation d'un seuil d'enclenchement d'alarme de pression.

Compléter la programmation ci-dessous de l'enclenchement des alarmes avec :

seuil d'alarme bas : % M100 seuil d'alarme haut : %M101

> entrée analogique θ four : %IW 2.12

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Dago 15 cur 24
⊏preuve . ⊏z	(1006-EEE EO)	SUJET	Coefficient : 5	Page 15 sur 24

EPREUVE E2 : Etude d'un ouvrage

SESSION 2010

Sujet: Approfondissement du champ d'application habitat-tertiaire

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants					
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Dago 16 cur 24	
⊏preuve . ⊏z	(1006-EEE EO)	303E1	Coefficient : 5	Page 16 sur 24	

Partie D : Alarme incendie

D1 Choix de la centrale :

L'usine d'incinération a été classée, par une commission de sécurité, comme étant un établissement nécessitant une

SSI de catégorie A a			on de securite, comme et	ant un etaonissemen	at necessitaint and
D1.1 : Donner la signi	fication de :				
SS	I :				
EA	:				
		•	4 boucles de détection.		
Ré	f:				
salle de contrôle. D2.1 :			plément d'équipement da	ns différents locaux	a techniques et
Local	Rapidité de détection	Type de défaut	Technologie	Dénomination	Référence
Poste HT/BT	Moyen	Feu ouvert			
Fosse de déchargement	Bonne	Fumée claire et évolution rapide			
Salle de contrôle :	Bonne	Fumée claire et évolution lente			
Ré	de report d'informa		qui doit être installé dans		
<u>D 3.3 :</u> Effectuer le choblindé et tressé pour			ransmission est de 100 M	IHz pour 250 Mbit/	s, qu'il doit être
Car	tégorie du câble : .				
Ré	f:				

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 17 cur 24
Epieuve . Ez	(1006-EEE EO)	SUJET	Coefficient : 5	Page 17 sur 24

Partie E : Éclairage de sécurité

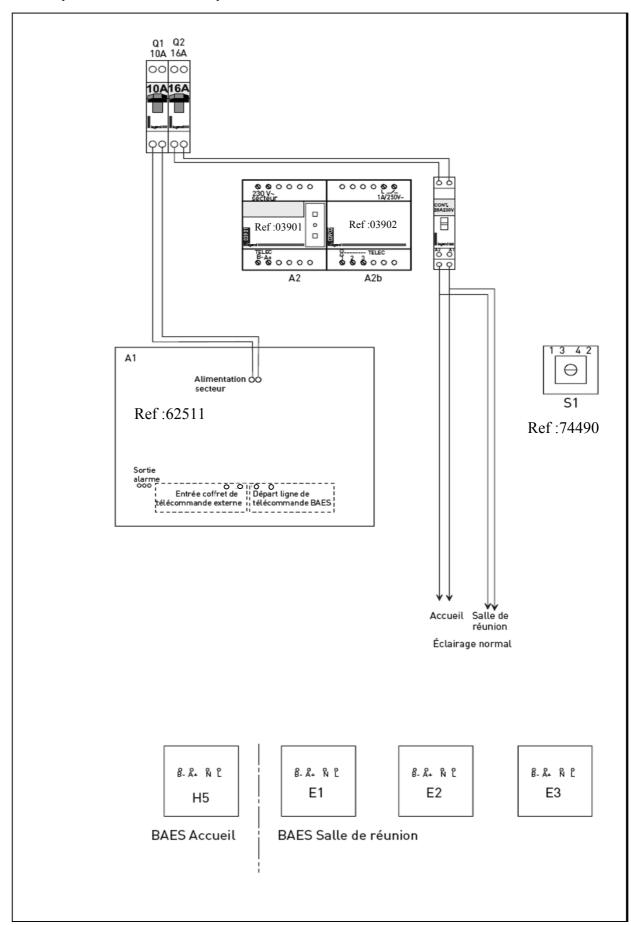
E1	Généralités	:	(DT31 à DT	38

E 1.1 : Que signifie le terme BAES ? BAES :	
E 1.2 : Indiquer les deux types de BAES	
Туре	
Flux lumineux	
Autonomie	

Norme

E 1.3 :

Périodicité des opérations de maintenance :


Qui ?	Exploitant	
Quand?	Tous les mois	Tous les 6 mois
BAES en place		
Lampe de sécurité		
Autonomie		
État physique extérieur des BAES satisfaisant		

E2 Centrale adressable :

E 2.1 : Quel est l'avantage de l'utilisation d'une centrale adressable ?	
	••

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 18 sur 24
Epieuve . Ez	(1006-EEE EO)	303E1	Coefficient : 5	raye 10 Sul 24

<u>E 2.2 :</u>
Compléter le schéma suivant et repérer éventuellement les bornes matérielles.

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 19 sur 24
Epieuve . Ez	(1006-EEE EO)	303E1	Coefficient : 5	rage 19 Sul 24

E3 Local à charbon actif:

Le charbon actif utilisé pour le traitement des fumées est stocké dans un local fermé en raison des poussières générées pouvant provoquer des risques d'explosion. Néanmoins ces risques ne sont pas susceptibles de se présenter en fonctionnement normal.

La dimension des sacs de conditionnement ayant augmenté, la zone de risque est étendue à la totalité du local.

E 3.1 : Définisser le type de zone du local.
E 3.2 : Définisser la catégorie de protection du matériel pour un niveau de protection haut.
E 3.3 : Effectuer le choix, du luminaire (2 x 18W) et du BAES indiquant l'issue du local, à charbon.
Réf luminaire : Réf BAES :
202 2022

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 20 sur 24
⊏preuve . ⊏z	(1006-EEE EO)	SUJET	Coefficient : 5	Page 20 Sui 24

EPREUVE E2 : Etude d'un ouvrage

SESSION 2010

Sujet: Approfondissement du champ d'application industriel

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 21 cur 24
⊏preuve . ⊏z	(1006-EEE EO)	303E1	Coefficient : 5	Page 21 sur 24

Partie F : Motorisation du grappin

F1 Plage de réglage de vitesse : (DT39 à DT42)

F2 Vitesse de rotation du moteur :
F2.1 : A l'aide de la documentation donner la valeur du rapport de réduction R du réducteur installé.
$\frac{\textbf{F2.2:}}{\text{Calculer la vitesse de rotation } n_n \text{ du moteur pour la vitesse de levage } V_L \text{ maxi si le tambour tourne à ce moment à } 63,66 \text{ tr/mn.}$
F2.3 : En déduire la vitesse de synchronisme n _S du moteur de levage et son nombre de paire de pôles.
F3 Choix du moteur :
F3.1 : Déterminer la masse que doit lever le moteur (charge utile + grappin) :

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 22 sur 24
Epieuve . Ez	(1006-EEE EO)	303E1	Coefficient : 5	raye 22 Sui 24

F3.2 : Déterminer le couple utile nécessaire pour le levage avec g = 10 (C = F x r avec r rayon du tambour).
F3.3 : Sachant que le réducteur a un rendement égal à 0,95, déterminer la valeur du couple moteur C _m .
F3.4 : Les capacités du moteur étant diminuées en raison de l'empoussièrement non négligeable, on est amené à appliquer un coefficient correcteur de 1,2 au couple obtenu. Déterminer ainsi le nouveau couple moteur.
F3.5 : Effectuer le choix du moteur de levage.
F4 Le variateur de vitesse : F4.1 : En considérant que le moteur de levage à une puissance de 30 kW, choisir le variateur de vitesse.
F4.2 : On doit obtenir deux vitesses prédéfinies : petite vitesse = 150 tr/min Grande vitesse = 1110 tr/min Déterminer les fréquences qui vont définir ces vitesses, en supposant le glissement nul (compensation).

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants				
Épreuve : E2	(1006 FFF FO)	SUJET	Durée : 5 heures	Page 23 sur 24
Epieuve . Ez	(1006-EEE EO)	303E1	Coefficient : 5	rage 23 Sui 24

Partie G: Choix matériel pour la supervision

G1 Supervision:

Pour des raisons de maintenance, l'ensemble des automates de l'usine ont été renouvellés par des TSX 57. La supervision qui permet le fonctionnement de l'usine doit communiquer avec les API par l'intermédiaire du réseau Ethernet 100 Base T(100 Mégabits).(DT 25, DT 43 à DT 44)

G1.1: Indiquer	la topologie du réseau i	mis en place.		
boucle		arbre		☐ bus
☐ maillé		ightharpoonup étoile		
donnée en hexadé	Adresse MAC Identifient de l'entre	: 00 80 F4 01 12 20 données) à considérer pour l'adi	
	$20_{(16)} = \dots$ $12_{(16)} = \dots$. ,
	$01_{(16)} = \dots$ $F4_{(16)} = \dots$. ,
	D'où, l'adresse IP =	••	•	
catégorie 6 compo		s. De plus pour répon		leurs Ethernet au switch doit être de EM, il est impératif d'opter pour un
Calculer	la longueur de câble po	ur l'installation comp	lète :	
Donner l	e type et la référence de	ce câble :		
Type de	câble :			
Référenc	e :			

Baccalauréat Professionnel Électrotechnique-Énergie et Équipements Communicants						
Épreuve : E2	(1006-EEE EO)	SUJET	Durée : 5 heures	Page 24 sur 24		
			Coefficient : 5			